1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package state
import (
"bytes"
"context"
"fmt"
"math"
"reflect"
"gvisor.dev/gvisor/pkg/state/wire"
)
// internalCallback is a interface called on object completion.
//
// There are two implementations: objectDecodeState & userCallback.
type internalCallback interface {
// source returns the dependent object. May be nil.
source() *objectDecodeState
// callbackRun executes the callback.
callbackRun()
}
// userCallback is an implementation of internalCallback.
type userCallback func()
// source implements internalCallback.source.
func (userCallback) source() *objectDecodeState {
return nil
}
// callbackRun implements internalCallback.callbackRun.
func (uc userCallback) callbackRun() {
uc()
}
// objectDecodeState represents an object that may be in the process of being
// decoded. Specifically, it represents either a decoded object, or an an
// interest in a future object that will be decoded. When that interest is
// registered (via register), the storage for the object will be created, but
// it will not be decoded until the object is encountered in the stream.
type objectDecodeState struct {
// id is the id for this object.
id objectID
// typ is the id for this typeID. This may be zero if this is not a
// type-registered structure.
typ typeID
// obj is the object. This may or may not be valid yet, depending on
// whether complete returns true. However, regardless of whether the
// object is valid, obj contains a final storage location for the
// object. This is immutable.
//
// Note that this must be addressable (obj.Addr() must not panic).
//
// The obj passed to the decode methods below will equal this obj only
// in the case of decoding the top-level object. However, the passed
// obj may represent individual fields, elements of a slice, etc. that
// are effectively embedded within the reflect.Value below but with
// distinct types.
obj reflect.Value
// blockedBy is the number of dependencies this object has.
blockedBy int
// callbacksInline is inline storage for callbacks.
callbacksInline [2]internalCallback
// callbacks is a set of callbacks to execute on load.
callbacks []internalCallback
completeEntry
}
// addCallback adds a callback to the objectDecodeState.
func (ods *objectDecodeState) addCallback(ic internalCallback) {
if ods.callbacks == nil {
ods.callbacks = ods.callbacksInline[:0]
}
ods.callbacks = append(ods.callbacks, ic)
}
// findCycleFor returns when the given object is found in the blocking set.
func (ods *objectDecodeState) findCycleFor(target *objectDecodeState) []*objectDecodeState {
for _, ic := range ods.callbacks {
other := ic.source()
if other != nil && other == target {
return []*objectDecodeState{target}
} else if childList := other.findCycleFor(target); childList != nil {
return append(childList, other)
}
}
// This should not occur.
Failf("no deadlock found?")
panic("unreachable")
}
// findCycle finds a dependency cycle.
func (ods *objectDecodeState) findCycle() []*objectDecodeState {
return append(ods.findCycleFor(ods), ods)
}
// source implements internalCallback.source.
func (ods *objectDecodeState) source() *objectDecodeState {
return ods
}
// callbackRun implements internalCallback.callbackRun.
func (ods *objectDecodeState) callbackRun() {
ods.blockedBy--
}
// decodeState is a graph of objects in the process of being decoded.
//
// The decode process involves loading the breadth-first graph generated by
// encode. This graph is read in it's entirety, ensuring that all object
// storage is complete.
//
// As the graph is being serialized, a set of completion callbacks are
// executed. These completion callbacks should form a set of acyclic subgraphs
// over the original one. After decoding is complete, the objects are scanned
// to ensure that all callbacks are executed, otherwise the callback graph was
// not acyclic.
type decodeState struct {
// ctx is the decode context.
ctx context.Context
// r is the input stream.
r wire.Reader
// types is the type database.
types typeDecodeDatabase
// objectByID is the set of objects in progress.
objectsByID []*objectDecodeState
// deferred are objects that have been read, by no interest has been
// registered yet. These will be decoded once interest in registered.
deferred map[objectID]wire.Object
// pending is the set of objects that are not yet complete.
pending completeList
// stats tracks time data.
stats Stats
}
// lookup looks up an object in decodeState or returns nil if no such object
// has been previously registered.
func (ds *decodeState) lookup(id objectID) *objectDecodeState {
if len(ds.objectsByID) < int(id) {
return nil
}
return ds.objectsByID[id-1]
}
// checkComplete checks for completion.
func (ds *decodeState) checkComplete(ods *objectDecodeState) bool {
// Still blocked?
if ods.blockedBy > 0 {
return false
}
// Track stats if relevant.
if ods.callbacks != nil && ods.typ != 0 {
ds.stats.start(ods.typ)
defer ds.stats.done()
}
// Fire all callbacks.
for _, ic := range ods.callbacks {
ic.callbackRun()
}
// Mark completed.
cbs := ods.callbacks
ods.callbacks = nil
ds.pending.Remove(ods)
// Recursively check others.
for _, ic := range cbs {
if other := ic.source(); other != nil && other.blockedBy == 0 {
ds.checkComplete(other)
}
}
return true // All set.
}
// wait registers a dependency on an object.
//
// As a special case, we always allow _useable_ references back to the first
// decoding object because it may have fields that are already decoded. We also
// allow trivial self reference, since they can be handled internally.
func (ds *decodeState) wait(waiter *objectDecodeState, id objectID, callback func()) {
switch id {
case waiter.id:
// Trivial self reference.
fallthrough
case 1:
// Root object; see above.
if callback != nil {
callback()
}
return
}
// Mark as blocked.
waiter.blockedBy++
// No nil can be returned here.
other := ds.lookup(id)
if callback != nil {
// Add the additional user callback.
other.addCallback(userCallback(callback))
}
// Mark waiter as unblocked.
other.addCallback(waiter)
}
// waitObject notes a blocking relationship.
func (ds *decodeState) waitObject(ods *objectDecodeState, encoded wire.Object, callback func()) {
if rv, ok := encoded.(*wire.Ref); ok && rv.Root != 0 {
// Refs can encode pointers and maps.
ds.wait(ods, objectID(rv.Root), callback)
} else if sv, ok := encoded.(*wire.Slice); ok && sv.Ref.Root != 0 {
// See decodeObject; we need to wait for the array (if non-nil).
ds.wait(ods, objectID(sv.Ref.Root), callback)
} else if iv, ok := encoded.(*wire.Interface); ok {
// It's an interface (wait recurisvely).
ds.waitObject(ods, iv.Value, callback)
} else if callback != nil {
// Nothing to wait for: execute the callback immediately.
callback()
}
}
// walkChild returns a child object from obj, given an accessor path. This is
// the decode-side equivalent to traverse in encode.go.
//
// For the purposes of this function, a child object is either a field within a
// struct or an array element, with one such indirection per element in
// path. The returned value may be an unexported field, so it may not be
// directly assignable. See unsafePointerTo.
func walkChild(path []wire.Dot, obj reflect.Value) reflect.Value {
// See wire.Ref.Dots. The path here is specified in reverse order.
for i := len(path) - 1; i >= 0; i-- {
switch pc := path[i].(type) {
case *wire.FieldName: // Must be a pointer.
if obj.Kind() != reflect.Struct {
Failf("next component in child path is a field name, but the current object is not a struct. Path: %v, current obj: %#v", path, obj)
}
obj = obj.FieldByName(string(*pc))
case wire.Index: // Embedded.
if obj.Kind() != reflect.Array {
Failf("next component in child path is an array index, but the current object is not an array. Path: %v, current obj: %#v", path, obj)
}
obj = obj.Index(int(pc))
default:
panic("unreachable: switch should be exhaustive")
}
}
return obj
}
// register registers a decode with a type.
//
// This type is only used to instantiate a new object if it has not been
// registered previously. This depends on the type provided if none is
// available in the object itself.
func (ds *decodeState) register(r *wire.Ref, typ reflect.Type) reflect.Value {
// Grow the objectsByID slice.
id := objectID(r.Root)
if len(ds.objectsByID) < int(id) {
ds.objectsByID = append(ds.objectsByID, make([]*objectDecodeState, int(id)-len(ds.objectsByID))...)
}
// Does this object already exist?
ods := ds.objectsByID[id-1]
if ods != nil {
return walkChild(r.Dots, ods.obj)
}
// Create the object.
if len(r.Dots) != 0 {
typ = ds.findType(r.Type)
}
v := reflect.New(typ)
ods = &objectDecodeState{
id: id,
obj: v.Elem(),
}
ds.objectsByID[id-1] = ods
ds.pending.PushBack(ods)
// Process any deferred objects & callbacks.
if encoded, ok := ds.deferred[id]; ok {
delete(ds.deferred, id)
ds.decodeObject(ods, ods.obj, encoded)
}
return walkChild(r.Dots, ods.obj)
}
// objectDecoder is for decoding structs.
type objectDecoder struct {
// ds is decodeState.
ds *decodeState
// ods is current object being decoded.
ods *objectDecodeState
// reconciledTypeEntry is the reconciled type information.
rte *reconciledTypeEntry
// encoded is the encoded object state.
encoded *wire.Struct
}
// load is helper for the public methods on Source.
func (od *objectDecoder) load(slot int, objPtr reflect.Value, wait bool, fn func()) {
// Note that we have reconciled the type and may remap the fields here
// to match what's expected by the decoder. The "slot" parameter here
// is in terms of the local type, where the fields in the encoded
// object are in terms of the wire object's type, which might be in a
// different order (but will have the same fields).
v := *od.encoded.Field(od.rte.FieldOrder[slot])
od.ds.decodeObject(od.ods, objPtr.Elem(), v)
if wait {
// Mark this individual object a blocker.
od.ds.waitObject(od.ods, v, fn)
}
}
// aterLoad implements Source.AfterLoad.
func (od *objectDecoder) afterLoad(fn func()) {
// Queue the local callback; this will execute when all of the above
// data dependencies have been cleared.
od.ods.addCallback(userCallback(fn))
}
// decodeStruct decodes a struct value.
func (ds *decodeState) decodeStruct(ods *objectDecodeState, obj reflect.Value, encoded *wire.Struct) {
if encoded.TypeID == 0 {
// Allow anonymous empty structs, but only if the encoded
// object also has no fields.
if encoded.Fields() == 0 && obj.NumField() == 0 {
return
}
// Propagate an error.
Failf("empty struct on wire %#v has field mismatch with type %q", encoded, obj.Type().Name())
}
// Lookup the object type.
rte := ds.types.Lookup(typeID(encoded.TypeID), obj.Type())
ods.typ = typeID(encoded.TypeID)
// Invoke the loader.
od := objectDecoder{
ds: ds,
ods: ods,
rte: rte,
encoded: encoded,
}
ds.stats.start(ods.typ)
defer ds.stats.done()
if sl, ok := obj.Addr().Interface().(SaverLoader); ok {
// Note: may be a registered empty struct which does not
// implement the saver/loader interfaces.
sl.StateLoad(Source{internal: od})
}
}
// decodeMap decodes a map value.
func (ds *decodeState) decodeMap(ods *objectDecodeState, obj reflect.Value, encoded *wire.Map) {
if obj.IsNil() {
// See pointerTo.
obj.Set(reflect.MakeMap(obj.Type()))
}
for i := 0; i < len(encoded.Keys); i++ {
// Decode the objects.
kv := reflect.New(obj.Type().Key()).Elem()
vv := reflect.New(obj.Type().Elem()).Elem()
ds.decodeObject(ods, kv, encoded.Keys[i])
ds.decodeObject(ods, vv, encoded.Values[i])
ds.waitObject(ods, encoded.Keys[i], nil)
ds.waitObject(ods, encoded.Values[i], nil)
// Set in the map.
obj.SetMapIndex(kv, vv)
}
}
// decodeArray decodes an array value.
func (ds *decodeState) decodeArray(ods *objectDecodeState, obj reflect.Value, encoded *wire.Array) {
if len(encoded.Contents) != obj.Len() {
Failf("mismatching array length expect=%d, actual=%d", obj.Len(), len(encoded.Contents))
}
// Decode the contents into the array.
for i := 0; i < len(encoded.Contents); i++ {
ds.decodeObject(ods, obj.Index(i), encoded.Contents[i])
ds.waitObject(ods, encoded.Contents[i], nil)
}
}
// findType finds the type for the given wire.TypeSpecs.
func (ds *decodeState) findType(t wire.TypeSpec) reflect.Type {
switch x := t.(type) {
case wire.TypeID:
typ := ds.types.LookupType(typeID(x))
rte := ds.types.Lookup(typeID(x), typ)
return rte.LocalType
case *wire.TypeSpecPointer:
return reflect.PtrTo(ds.findType(x.Type))
case *wire.TypeSpecArray:
return reflect.ArrayOf(int(x.Count), ds.findType(x.Type))
case *wire.TypeSpecSlice:
return reflect.SliceOf(ds.findType(x.Type))
case *wire.TypeSpecMap:
return reflect.MapOf(ds.findType(x.Key), ds.findType(x.Value))
default:
// Should not happen.
Failf("unknown type %#v", t)
}
panic("unreachable")
}
// decodeInterface decodes an interface value.
func (ds *decodeState) decodeInterface(ods *objectDecodeState, obj reflect.Value, encoded *wire.Interface) {
if _, ok := encoded.Type.(wire.TypeSpecNil); ok {
// Special case; the nil object. Just decode directly, which
// will read nil from the wire (if encoded correctly).
ds.decodeObject(ods, obj, encoded.Value)
return
}
// We now need to resolve the actual type.
typ := ds.findType(encoded.Type)
// We need to imbue type information here, then we can proceed to
// decode normally. In order to avoid issues with setting value-types,
// we create a new non-interface version of this object. We will then
// set the interface object to be equal to whatever we decode.
origObj := obj
obj = reflect.New(typ).Elem()
defer origObj.Set(obj)
// With the object now having sufficient type information to actually
// have Set called on it, we can proceed to decode the value.
ds.decodeObject(ods, obj, encoded.Value)
}
// isFloatEq determines if x and y represent the same value.
func isFloatEq(x float64, y float64) bool {
switch {
case math.IsNaN(x):
return math.IsNaN(y)
case math.IsInf(x, 1):
return math.IsInf(y, 1)
case math.IsInf(x, -1):
return math.IsInf(y, -1)
default:
return x == y
}
}
// isComplexEq determines if x and y represent the same value.
func isComplexEq(x complex128, y complex128) bool {
return isFloatEq(real(x), real(y)) && isFloatEq(imag(x), imag(y))
}
// decodeObject decodes a object value.
func (ds *decodeState) decodeObject(ods *objectDecodeState, obj reflect.Value, encoded wire.Object) {
switch x := encoded.(type) {
case wire.Nil: // Fast path: first.
// We leave obj alone here. That's because if obj represents an
// interface, it may have been imbued with type information in
// decodeInterface, and we don't want to destroy that.
case *wire.Ref:
// Nil pointers may be encoded in a "forceValue" context. For
// those we just leave it alone as the value will already be
// correct (nil).
if id := objectID(x.Root); id == 0 {
return
}
// Note that if this is a map type, we go through a level of
// indirection to allow for map aliasing.
if obj.Kind() == reflect.Map {
v := ds.register(x, obj.Type())
if v.IsNil() {
// Note that we don't want to clobber the map
// if has already been decoded by decodeMap. We
// just make it so that we have a consistent
// reference when that eventually does happen.
v.Set(reflect.MakeMap(v.Type()))
}
obj.Set(v)
return
}
// Normal assignment: authoritative only if no dots.
v := ds.register(x, obj.Type().Elem())
if v.IsValid() {
obj.Set(unsafePointerTo(v))
}
case wire.Bool:
obj.SetBool(bool(x))
case wire.Int:
obj.SetInt(int64(x))
if obj.Int() != int64(x) {
Failf("signed integer truncated from %v to %v", int64(x), obj.Int())
}
case wire.Uint:
obj.SetUint(uint64(x))
if obj.Uint() != uint64(x) {
Failf("unsigned integer truncated from %v to %v", uint64(x), obj.Uint())
}
case wire.Float32:
obj.SetFloat(float64(x))
case wire.Float64:
obj.SetFloat(float64(x))
if !isFloatEq(obj.Float(), float64(x)) {
Failf("floating point number truncated from %v to %v", float64(x), obj.Float())
}
case *wire.Complex64:
obj.SetComplex(complex128(*x))
case *wire.Complex128:
obj.SetComplex(complex128(*x))
if !isComplexEq(obj.Complex(), complex128(*x)) {
Failf("complex number truncated from %v to %v", complex128(*x), obj.Complex())
}
case *wire.String:
obj.SetString(string(*x))
case *wire.Slice:
// See *wire.Ref above; same applies.
if id := objectID(x.Ref.Root); id == 0 {
return
}
// Note that it's fine to slice the array here and assume that
// contents will still be filled in later on.
typ := reflect.ArrayOf(int(x.Capacity), obj.Type().Elem()) // The object type.
v := ds.register(&x.Ref, typ)
obj.Set(v.Slice3(0, int(x.Length), int(x.Capacity)))
case *wire.Array:
ds.decodeArray(ods, obj, x)
case *wire.Struct:
ds.decodeStruct(ods, obj, x)
case *wire.Map:
ds.decodeMap(ods, obj, x)
case *wire.Interface:
ds.decodeInterface(ods, obj, x)
default:
// Shoud not happen, not propagated as an error.
Failf("unknown object %#v for %q", encoded, obj.Type().Name())
}
}
// Load deserializes the object graph rooted at obj.
//
// This function may panic and should be run in safely().
func (ds *decodeState) Load(obj reflect.Value) {
ds.stats.init()
defer ds.stats.fini(func(id typeID) string {
return ds.types.LookupName(id)
})
// Create the root object.
rootOds := &objectDecodeState{
id: 1,
obj: obj,
}
ds.objectsByID = append(ds.objectsByID, rootOds)
ds.pending.PushBack(rootOds)
// Read the number of objects.
lastID, object, err := ReadHeader(ds.r)
if err != nil {
Failf("header error: %w", err)
}
if !object {
Failf("object missing")
}
// Decode all objects.
var (
encoded wire.Object
ods *objectDecodeState
id = objectID(1)
tid = typeID(1)
)
if err := safely(func() {
// Decode all objects in the stream.
//
// Note that the structure of this decoding loop should match
// the raw decoding loop in printer.go.
for id <= objectID(lastID) {
// Unmarshal the object.
encoded = wire.Load(ds.r)
// Is this a type object? Handle inline.
if wt, ok := encoded.(*wire.Type); ok {
ds.types.Register(wt)
tid++
encoded = nil
continue
}
// Actually resolve the object.
ods = ds.lookup(id)
if ods != nil {
// Decode the object.
ds.decodeObject(ods, ods.obj, encoded)
} else {
// If an object hasn't had interest registered
// previously or isn't yet valid, we deferred
// decoding until interest is registered.
ds.deferred[id] = encoded
}
// For error handling.
ods = nil
encoded = nil
id++
}
}); err != nil {
// Include as much information as we can, taking into account
// the possible state transitions above.
if ods != nil {
Failf("error decoding object ID %d (%T) from %#v: %w", id, ods.obj.Interface(), encoded, err)
} else if encoded != nil {
Failf("lookup error decoding object ID %d from %#v: %w", id, encoded, err)
} else {
Failf("general decoding error: %w", err)
}
}
// Check if we have any deferred objects.
for id, encoded := range ds.deferred {
// Shoud never happen, the graph was bogus.
Failf("still have deferred objects: one is ID %d, %#v", id, encoded)
}
// Scan and fire all callbacks. We iterate over the list of incomplete
// objects until all have been finished. We stop iterating if no
// objects become complete (there is a dependency cycle).
//
// Note that we iterate backwards here, because there will be a strong
// tendendcy for blocking relationships to go from earlier objects to
// later (deeper) objects in the graph. This will reduce the number of
// iterations required to finish all objects.
if err := safely(func() {
for ds.pending.Back() != nil {
thisCycle := false
for ods = ds.pending.Back(); ods != nil; {
if ds.checkComplete(ods) {
thisCycle = true
break
}
ods = ods.Prev()
}
if !thisCycle {
break
}
}
}); err != nil {
Failf("error executing callbacks for %#v: %w", ods.obj.Interface(), err)
}
// Check if we have any remaining dependency cycles. If there are any
// objects left in the pending list, then it must be due to a cycle.
if ods := ds.pending.Front(); ods != nil {
// This must be the result of a dependency cycle.
cycle := ods.findCycle()
var buf bytes.Buffer
buf.WriteString("dependency cycle: {")
for i, cycleOS := range cycle {
if i > 0 {
buf.WriteString(" => ")
}
fmt.Fprintf(&buf, "%q", cycleOS.obj.Type())
}
buf.WriteString("}")
Failf("incomplete graph: %s", string(buf.Bytes()))
}
}
// ReadHeader reads an object header.
//
// Each object written to the statefile is prefixed with a header. See
// WriteHeader for more information; these functions are exported to allow
// non-state writes to the file to play nice with debugging tools.
func ReadHeader(r wire.Reader) (length uint64, object bool, err error) {
// Read the header.
err = safely(func() {
length = wire.LoadUint(r)
})
if err != nil {
// On the header, pass raw I/O errors.
if sErr, ok := err.(*ErrState); ok {
return 0, false, sErr.Unwrap()
}
}
// Decode whether the object is valid.
object = length&objectFlag != 0
length &^= objectFlag
return
}
|