1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
|
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package vfs
import (
"fmt"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/fspath"
"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/syserror"
)
// ResolvingPath represents the state of an in-progress path resolution, shared
// between VFS and FilesystemImpl methods that take a path.
//
// From the perspective of FilesystemImpl methods, a ResolvingPath represents a
// starting Dentry on the associated Filesystem (on which a reference is
// already held), a stream of path components relative to that Dentry, and
// elements of the invoking Context that are commonly required by
// FilesystemImpl methods.
//
// ResolvingPath is loosely analogous to Linux's struct nameidata.
//
// +stateify savable
type ResolvingPath struct {
vfs *VirtualFilesystem
root VirtualDentry // refs borrowed from PathOperation
mount *Mount
start *Dentry
pit fspath.Iterator
flags uint16
mustBeDir bool // final file must be a directory?
mustBeDirOrig bool
symlinks uint8 // number of symlinks traversed
symlinksOrig uint8
curPart uint8 // index into parts
numOrigParts uint8
creds *auth.Credentials
// Data associated with resolve*Errors, stored in ResolvingPath so that
// those errors don't need to allocate.
nextMount *Mount // ref held if not nil
nextStart *Dentry // ref held if not nil
absSymlinkTarget fspath.Path
// ResolvingPath must track up to two relative paths: the "current"
// relative path, which is updated whenever a relative symlink is
// encountered, and the "original" relative path, which is updated from the
// current relative path by handleError() when resolution must change
// filesystems (due to reaching a mount boundary or absolute symlink) and
// overwrites the current relative path when Restart() is called.
parts [1 + linux.MaxSymlinkTraversals]fspath.Iterator
origParts [1 + linux.MaxSymlinkTraversals]fspath.Iterator
}
const (
rpflagsHaveMountRef = 1 << iota // do we hold a reference on mount?
rpflagsHaveStartRef // do we hold a reference on start?
rpflagsFollowFinalSymlink // same as PathOperation.FollowFinalSymlink
)
func init() {
if maxParts := len(ResolvingPath{}.parts); maxParts > 255 {
panic(fmt.Sprintf("uint8 is insufficient to accommodate len(ResolvingPath.parts) (%d)", maxParts))
}
}
// Error types that communicate state from the FilesystemImpl-caller,
// VFS-callee side of path resolution (i.e. errors returned by
// ResolvingPath.Resolve*()) to the VFS-caller, FilesystemImpl-callee side
// (i.e. VFS methods => ResolvingPath.handleError()). These are empty structs
// rather than error values because Go doesn't support non-primitive constants,
// so error "constants" are really mutable vars, necessitating somewhat
// expensive interface object comparisons.
// +stateify savable
type resolveMountRootOrJumpError struct{}
// Error implements error.Error.
func (resolveMountRootOrJumpError) Error() string {
return "resolving mount root or jump"
}
// +stateify savable
type resolveMountPointError struct{}
// Error implements error.Error.
func (resolveMountPointError) Error() string {
return "resolving mount point"
}
// +stateify savable
type resolveAbsSymlinkError struct{}
// Error implements error.Error.
func (resolveAbsSymlinkError) Error() string {
return "resolving absolute symlink"
}
var resolvingPathPool = sync.Pool{
New: func() interface{} {
return &ResolvingPath{}
},
}
// getResolvingPath gets a new ResolvingPath from the pool. Caller must call
// ResolvingPath.Release() when done.
func (vfs *VirtualFilesystem) getResolvingPath(creds *auth.Credentials, pop *PathOperation) *ResolvingPath {
rp := resolvingPathPool.Get().(*ResolvingPath)
rp.vfs = vfs
rp.root = pop.Root
rp.mount = pop.Start.mount
rp.start = pop.Start.dentry
rp.pit = pop.Path.Begin
rp.flags = 0
if pop.FollowFinalSymlink {
rp.flags |= rpflagsFollowFinalSymlink
}
rp.mustBeDir = pop.Path.Dir
rp.mustBeDirOrig = pop.Path.Dir
rp.symlinks = 0
rp.curPart = 0
rp.numOrigParts = 1
rp.creds = creds
rp.parts[0] = pop.Path.Begin
rp.origParts[0] = pop.Path.Begin
return rp
}
// Copy creates another ResolvingPath with the same state as the original.
// Copies are independent, using the copy does not change the original and
// vice-versa.
//
// Caller must call Resease() when done.
func (rp *ResolvingPath) Copy() *ResolvingPath {
copy := resolvingPathPool.Get().(*ResolvingPath)
*copy = *rp // All fields all shallow copiable.
// Take extra reference for the copy if the original had them.
if copy.flags&rpflagsHaveStartRef != 0 {
copy.start.IncRef()
}
if copy.flags&rpflagsHaveMountRef != 0 {
copy.mount.IncRef()
}
// Reset error state.
copy.nextStart = nil
copy.nextMount = nil
return copy
}
// Release decrements references if needed and returns the object to the pool.
func (rp *ResolvingPath) Release(ctx context.Context) {
rp.root = VirtualDentry{}
rp.decRefStartAndMount(ctx)
rp.mount = nil
rp.start = nil
rp.releaseErrorState(ctx)
resolvingPathPool.Put(rp)
}
func (rp *ResolvingPath) decRefStartAndMount(ctx context.Context) {
if rp.flags&rpflagsHaveStartRef != 0 {
rp.start.DecRef(ctx)
}
if rp.flags&rpflagsHaveMountRef != 0 {
rp.mount.DecRef(ctx)
}
}
func (rp *ResolvingPath) releaseErrorState(ctx context.Context) {
if rp.nextStart != nil {
rp.nextStart.DecRef(ctx)
rp.nextStart = nil
}
if rp.nextMount != nil {
rp.nextMount.DecRef(ctx)
rp.nextMount = nil
}
}
// VirtualFilesystem returns the containing VirtualFilesystem.
func (rp *ResolvingPath) VirtualFilesystem() *VirtualFilesystem {
return rp.vfs
}
// Credentials returns the credentials of rp's provider.
func (rp *ResolvingPath) Credentials() *auth.Credentials {
return rp.creds
}
// Mount returns the Mount on which path resolution is currently occurring. It
// does not take a reference on the returned Mount.
func (rp *ResolvingPath) Mount() *Mount {
return rp.mount
}
// Start returns the starting Dentry represented by rp. It does not take a
// reference on the returned Dentry.
func (rp *ResolvingPath) Start() *Dentry {
return rp.start
}
// Done returns true if there are no remaining path components in the stream
// represented by rp.
func (rp *ResolvingPath) Done() bool {
// We don't need to check for rp.curPart == 0 because rp.Advance() won't
// set rp.pit to a terminal iterator otherwise.
return !rp.pit.Ok()
}
// Final returns true if there is exactly one remaining path component in the
// stream represented by rp.
//
// Preconditions: !rp.Done().
func (rp *ResolvingPath) Final() bool {
return rp.curPart == 0 && !rp.pit.NextOk()
}
// Component returns the current path component in the stream represented by
// rp.
//
// Preconditions: !rp.Done().
func (rp *ResolvingPath) Component() string {
if checkInvariants {
if !rp.pit.Ok() {
panic("ResolvingPath.Component() called at end of relative path")
}
}
return rp.pit.String()
}
// Advance advances the stream of path components represented by rp.
//
// Preconditions: !rp.Done().
func (rp *ResolvingPath) Advance() {
if checkInvariants {
if !rp.pit.Ok() {
panic("ResolvingPath.Advance() called at end of relative path")
}
}
next := rp.pit.Next()
if next.Ok() || rp.curPart == 0 { // have next component, or at end of path
rp.pit = next
} else { // at end of path segment, continue with next one
rp.curPart--
rp.pit = rp.parts[rp.curPart]
}
}
// Restart resets the stream of path components represented by rp to its state
// on entry to the current FilesystemImpl method.
func (rp *ResolvingPath) Restart(ctx context.Context) {
rp.pit = rp.origParts[rp.numOrigParts-1]
rp.mustBeDir = rp.mustBeDirOrig
rp.symlinks = rp.symlinksOrig
rp.curPart = rp.numOrigParts - 1
copy(rp.parts[:], rp.origParts[:rp.numOrigParts])
rp.releaseErrorState(ctx)
}
func (rp *ResolvingPath) relpathCommit() {
rp.mustBeDirOrig = rp.mustBeDir
rp.symlinksOrig = rp.symlinks
rp.numOrigParts = rp.curPart + 1
copy(rp.origParts[:rp.curPart], rp.parts[:])
rp.origParts[rp.curPart] = rp.pit
}
// CheckRoot is called before resolving the parent of the Dentry d. If the
// Dentry is contextually a VFS root, such that path resolution should treat
// d's parent as itself, CheckRoot returns (true, nil). If the Dentry is the
// root of a non-root mount, such that path resolution should switch to another
// Mount, CheckRoot returns (unspecified, non-nil error). Otherwise, path
// resolution should resolve d's parent normally, and CheckRoot returns (false,
// nil).
func (rp *ResolvingPath) CheckRoot(ctx context.Context, d *Dentry) (bool, error) {
if d == rp.root.dentry && rp.mount == rp.root.mount {
// At contextual VFS root (due to e.g. chroot(2)).
return true, nil
} else if d == rp.mount.root {
// At mount root ...
vd := rp.vfs.getMountpointAt(ctx, rp.mount, rp.root)
if vd.Ok() {
// ... of non-root mount.
rp.nextMount = vd.mount
rp.nextStart = vd.dentry
return false, resolveMountRootOrJumpError{}
}
// ... of root mount.
return true, nil
}
return false, nil
}
// CheckMount is called after resolving the parent or child of another Dentry
// to d. If d is a mount point, such that path resolution should switch to
// another Mount, CheckMount returns a non-nil error. Otherwise, CheckMount
// returns nil.
func (rp *ResolvingPath) CheckMount(ctx context.Context, d *Dentry) error {
if !d.isMounted() {
return nil
}
if mnt := rp.vfs.getMountAt(ctx, rp.mount, d); mnt != nil {
rp.nextMount = mnt
return resolveMountPointError{}
}
return nil
}
// ShouldFollowSymlink returns true if, supposing that the current path
// component in pcs represents a symbolic link, the symbolic link should be
// followed.
//
// If path is terminated with '/', the '/' is considered the last element and
// any symlink before that is followed:
// - For most non-creating walks, the last path component is handled by
// fs/namei.c:lookup_last(), which sets LOOKUP_FOLLOW if the first byte
// after the path component is non-NULL (which is only possible if it's '/')
// and the path component is of type LAST_NORM.
//
// - For open/openat/openat2 without O_CREAT, the last path component is
// handled by fs/namei.c:do_last(), which does the same, though without the
// LAST_NORM check.
//
// Preconditions: !rp.Done().
func (rp *ResolvingPath) ShouldFollowSymlink() bool {
// Non-final symlinks are always followed. Paths terminated with '/' are also
// always followed.
return rp.flags&rpflagsFollowFinalSymlink != 0 || !rp.Final() || rp.MustBeDir()
}
// HandleSymlink is called when the current path component is a symbolic link
// to the given target. If the calling Filesystem method should continue path
// traversal, HandleSymlink updates the path component stream to reflect the
// symlink target and returns nil. Otherwise it returns a non-nil error.
//
// Preconditions: !rp.Done().
//
// Postconditions: If HandleSymlink returns a nil error, then !rp.Done().
func (rp *ResolvingPath) HandleSymlink(target string) error {
if rp.symlinks >= linux.MaxSymlinkTraversals {
return syserror.ELOOP
}
if len(target) == 0 {
return syserror.ENOENT
}
rp.symlinks++
targetPath := fspath.Parse(target)
if targetPath.Absolute {
rp.absSymlinkTarget = targetPath
return resolveAbsSymlinkError{}
}
// Consume the path component that represented the symlink.
rp.Advance()
// Prepend the symlink target to the relative path.
if checkInvariants {
if !targetPath.HasComponents() {
panic(fmt.Sprintf("non-empty pathname %q parsed to relative path with no components", target))
}
}
rp.relpathPrepend(targetPath)
return nil
}
// Preconditions: path.HasComponents().
func (rp *ResolvingPath) relpathPrepend(path fspath.Path) {
if rp.pit.Ok() {
rp.parts[rp.curPart] = rp.pit
rp.pit = path.Begin
rp.curPart++
} else {
// The symlink was the final path component, so now the symlink target
// is the whole path.
rp.pit = path.Begin
// Symlink targets can set rp.mustBeDir (if they end in a trailing /),
// but can't unset it.
if path.Dir {
rp.mustBeDir = true
}
}
}
// HandleJump is called when the current path component is a "magic" link to
// the given VirtualDentry, like /proc/[pid]/fd/[fd]. If the calling Filesystem
// method should continue path traversal, HandleMagicSymlink updates the path
// component stream to reflect the magic link target and returns nil. Otherwise
// it returns a non-nil error.
//
// Preconditions: !rp.Done().
func (rp *ResolvingPath) HandleJump(target VirtualDentry) error {
if rp.symlinks >= linux.MaxSymlinkTraversals {
return syserror.ELOOP
}
rp.symlinks++
// Consume the path component that represented the magic link.
rp.Advance()
// Unconditionally return a resolveMountRootOrJumpError, even if the Mount
// isn't changing, to force restarting at the new Dentry.
target.IncRef()
rp.nextMount = target.mount
rp.nextStart = target.dentry
return resolveMountRootOrJumpError{}
}
func (rp *ResolvingPath) handleError(ctx context.Context, err error) bool {
switch err.(type) {
case resolveMountRootOrJumpError:
// Switch to the new Mount. We hold references on the Mount and Dentry.
rp.decRefStartAndMount(ctx)
rp.mount = rp.nextMount
rp.start = rp.nextStart
rp.flags |= rpflagsHaveMountRef | rpflagsHaveStartRef
rp.nextMount = nil
rp.nextStart = nil
// Commit the previous FileystemImpl's progress through the relative
// path. (Don't consume the path component that caused us to traverse
// through the mount root - i.e. the ".." - because we still need to
// resolve the mount point's parent in the new FilesystemImpl.)
rp.relpathCommit()
// Restart path resolution on the new Mount. Don't bother calling
// rp.releaseErrorState() since we already set nextMount and nextStart
// to nil above.
return true
case resolveMountPointError:
// Switch to the new Mount. We hold a reference on the Mount, but
// borrow the reference on the mount root from the Mount.
rp.decRefStartAndMount(ctx)
rp.mount = rp.nextMount
rp.start = rp.nextMount.root
rp.flags = rp.flags&^rpflagsHaveStartRef | rpflagsHaveMountRef
rp.nextMount = nil
// Consume the path component that represented the mount point.
rp.Advance()
// Commit the previous FilesystemImpl's progress through the relative
// path.
rp.relpathCommit()
// Restart path resolution on the new Mount.
rp.releaseErrorState(ctx)
return true
case resolveAbsSymlinkError:
// Switch to the new Mount. References are borrowed from rp.root.
rp.decRefStartAndMount(ctx)
rp.mount = rp.root.mount
rp.start = rp.root.dentry
rp.flags &^= rpflagsHaveMountRef | rpflagsHaveStartRef
// Consume the path component that represented the symlink.
rp.Advance()
// Prepend the symlink target to the relative path.
rp.relpathPrepend(rp.absSymlinkTarget)
// Commit the previous FilesystemImpl's progress through the relative
// path, including the symlink target we just prepended.
rp.relpathCommit()
// Restart path resolution on the new Mount.
rp.releaseErrorState(ctx)
return true
default:
// Not an error we can handle.
return false
}
}
// canHandleError returns true if err is an error returned by rp.Resolve*()
// that rp.handleError() may attempt to handle.
func (rp *ResolvingPath) canHandleError(err error) bool {
switch err.(type) {
case resolveMountRootOrJumpError, resolveMountPointError, resolveAbsSymlinkError:
return true
default:
return false
}
}
// MustBeDir returns true if the file traversed by rp must be a directory.
func (rp *ResolvingPath) MustBeDir() bool {
return rp.mustBeDir
}
|