1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
|
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package vfs2
import (
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/kernel"
"gvisor.dev/gvisor/pkg/sentry/kernel/pipe"
"gvisor.dev/gvisor/pkg/sentry/vfs"
"gvisor.dev/gvisor/pkg/syserror"
"gvisor.dev/gvisor/pkg/waiter"
)
// Splice implements Linux syscall splice(2).
func Splice(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
inFD := args[0].Int()
inOffsetPtr := args[1].Pointer()
outFD := args[2].Int()
outOffsetPtr := args[3].Pointer()
count := int64(args[4].SizeT())
flags := args[5].Int()
if count == 0 {
return 0, nil, nil
}
if count > int64(kernel.MAX_RW_COUNT) {
count = int64(kernel.MAX_RW_COUNT)
}
// Check for invalid flags.
if flags&^(linux.SPLICE_F_MOVE|linux.SPLICE_F_NONBLOCK|linux.SPLICE_F_MORE|linux.SPLICE_F_GIFT) != 0 {
return 0, nil, syserror.EINVAL
}
// Get file descriptions.
inFile := t.GetFileVFS2(inFD)
if inFile == nil {
return 0, nil, syserror.EBADF
}
defer inFile.DecRef()
outFile := t.GetFileVFS2(outFD)
if outFile == nil {
return 0, nil, syserror.EBADF
}
defer outFile.DecRef()
// Check that both files support the required directionality.
if !inFile.IsReadable() || !outFile.IsWritable() {
return 0, nil, syserror.EBADF
}
// The operation is non-blocking if anything is non-blocking.
//
// N.B. This is a rather simplistic heuristic that avoids some
// poor edge case behavior since the exact semantics here are
// underspecified and vary between versions of Linux itself.
nonBlock := ((inFile.StatusFlags()|outFile.StatusFlags())&linux.O_NONBLOCK != 0) || (flags&linux.SPLICE_F_NONBLOCK != 0)
// At least one file description must represent a pipe.
inPipeFD, inIsPipe := inFile.Impl().(*pipe.VFSPipeFD)
outPipeFD, outIsPipe := outFile.Impl().(*pipe.VFSPipeFD)
if !inIsPipe && !outIsPipe {
return 0, nil, syserror.EINVAL
}
// Copy in offsets.
inOffset := int64(-1)
if inOffsetPtr != 0 {
if inIsPipe {
return 0, nil, syserror.ESPIPE
}
if inFile.Options().DenyPRead {
return 0, nil, syserror.EINVAL
}
if _, err := t.CopyIn(inOffsetPtr, &inOffset); err != nil {
return 0, nil, err
}
if inOffset < 0 {
return 0, nil, syserror.EINVAL
}
}
outOffset := int64(-1)
if outOffsetPtr != 0 {
if outIsPipe {
return 0, nil, syserror.ESPIPE
}
if outFile.Options().DenyPWrite {
return 0, nil, syserror.EINVAL
}
if _, err := t.CopyIn(outOffsetPtr, &outOffset); err != nil {
return 0, nil, err
}
if outOffset < 0 {
return 0, nil, syserror.EINVAL
}
}
// Move data.
var (
n int64
err error
inCh chan struct{}
outCh chan struct{}
)
for {
// If both input and output are pipes, delegate to the pipe
// implementation. Otherwise, exactly one end is a pipe, which we
// ensure is consistently ordered after the non-pipe FD's locks by
// passing the pipe FD as usermem.IO to the non-pipe end.
switch {
case inIsPipe && outIsPipe:
n, err = pipe.Splice(t, outPipeFD, inPipeFD, count)
case inIsPipe:
if outOffset != -1 {
n, err = outFile.PWrite(t, inPipeFD.IOSequence(count), outOffset, vfs.WriteOptions{})
outOffset += n
} else {
n, err = outFile.Write(t, inPipeFD.IOSequence(count), vfs.WriteOptions{})
}
case outIsPipe:
if inOffset != -1 {
n, err = inFile.PRead(t, outPipeFD.IOSequence(count), inOffset, vfs.ReadOptions{})
inOffset += n
} else {
n, err = inFile.Read(t, outPipeFD.IOSequence(count), vfs.ReadOptions{})
}
}
if n != 0 || err != syserror.ErrWouldBlock || nonBlock {
break
}
// Note that the blocking behavior here is a bit different than the
// normal pattern. Because we need to have both data to read and data
// to write simultaneously, we actually explicitly block on both of
// these cases in turn before returning to the splice operation.
if inFile.Readiness(eventMaskRead)&eventMaskRead == 0 {
if inCh == nil {
inCh = make(chan struct{}, 1)
inW, _ := waiter.NewChannelEntry(inCh)
inFile.EventRegister(&inW, eventMaskRead)
defer inFile.EventUnregister(&inW)
continue // Need to refresh readiness.
}
if err = t.Block(inCh); err != nil {
break
}
}
if outFile.Readiness(eventMaskWrite)&eventMaskWrite == 0 {
if outCh == nil {
outCh = make(chan struct{}, 1)
outW, _ := waiter.NewChannelEntry(outCh)
outFile.EventRegister(&outW, eventMaskWrite)
defer outFile.EventUnregister(&outW)
continue // Need to refresh readiness.
}
if err = t.Block(outCh); err != nil {
break
}
}
}
// Copy updated offsets out.
if inOffsetPtr != 0 {
if _, err := t.CopyOut(inOffsetPtr, &inOffset); err != nil {
return 0, nil, err
}
}
if outOffsetPtr != 0 {
if _, err := t.CopyOut(outOffsetPtr, &outOffset); err != nil {
return 0, nil, err
}
}
if n == 0 {
return 0, nil, err
}
// On Linux, inotify behavior is not very consistent with splice(2). We try
// our best to emulate Linux for very basic calls to splice, where for some
// reason, events are generated for output files, but not input files.
outFile.Dentry().InotifyWithParent(linux.IN_MODIFY, 0, vfs.PathEvent)
return uintptr(n), nil, nil
}
// Tee implements Linux syscall tee(2).
func Tee(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
inFD := args[0].Int()
outFD := args[1].Int()
count := int64(args[2].SizeT())
flags := args[3].Int()
if count == 0 {
return 0, nil, nil
}
if count > int64(kernel.MAX_RW_COUNT) {
count = int64(kernel.MAX_RW_COUNT)
}
// Check for invalid flags.
if flags&^(linux.SPLICE_F_MOVE|linux.SPLICE_F_NONBLOCK|linux.SPLICE_F_MORE|linux.SPLICE_F_GIFT) != 0 {
return 0, nil, syserror.EINVAL
}
// Get file descriptions.
inFile := t.GetFileVFS2(inFD)
if inFile == nil {
return 0, nil, syserror.EBADF
}
defer inFile.DecRef()
outFile := t.GetFileVFS2(outFD)
if outFile == nil {
return 0, nil, syserror.EBADF
}
defer outFile.DecRef()
// Check that both files support the required directionality.
if !inFile.IsReadable() || !outFile.IsWritable() {
return 0, nil, syserror.EBADF
}
// The operation is non-blocking if anything is non-blocking.
//
// N.B. This is a rather simplistic heuristic that avoids some
// poor edge case behavior since the exact semantics here are
// underspecified and vary between versions of Linux itself.
nonBlock := ((inFile.StatusFlags()|outFile.StatusFlags())&linux.O_NONBLOCK != 0) || (flags&linux.SPLICE_F_NONBLOCK != 0)
// Both file descriptions must represent pipes.
inPipeFD, inIsPipe := inFile.Impl().(*pipe.VFSPipeFD)
outPipeFD, outIsPipe := outFile.Impl().(*pipe.VFSPipeFD)
if !inIsPipe || !outIsPipe {
return 0, nil, syserror.EINVAL
}
// Copy data.
var (
inCh chan struct{}
outCh chan struct{}
)
for {
n, err := pipe.Tee(t, outPipeFD, inPipeFD, count)
if n != 0 {
return uintptr(n), nil, nil
}
if err != syserror.ErrWouldBlock || nonBlock {
return 0, nil, err
}
// Note that the blocking behavior here is a bit different than the
// normal pattern. Because we need to have both data to read and data
// to write simultaneously, we actually explicitly block on both of
// these cases in turn before returning to the tee operation.
if inFile.Readiness(eventMaskRead)&eventMaskRead == 0 {
if inCh == nil {
inCh = make(chan struct{}, 1)
inW, _ := waiter.NewChannelEntry(inCh)
inFile.EventRegister(&inW, eventMaskRead)
defer inFile.EventUnregister(&inW)
continue // Need to refresh readiness.
}
if err := t.Block(inCh); err != nil {
return 0, nil, err
}
}
if outFile.Readiness(eventMaskWrite)&eventMaskWrite == 0 {
if outCh == nil {
outCh = make(chan struct{}, 1)
outW, _ := waiter.NewChannelEntry(outCh)
outFile.EventRegister(&outW, eventMaskWrite)
defer outFile.EventUnregister(&outW)
continue // Need to refresh readiness.
}
if err := t.Block(outCh); err != nil {
return 0, nil, err
}
}
}
}
|