1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
|
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package linux
import (
"fmt"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/kernel"
"gvisor.dev/gvisor/pkg/syserror"
"gvisor.dev/gvisor/pkg/usermem"
)
// We unconditionally report a single NUMA node. This also means that our
// "nodemask_t" is a single unsigned long (uint64).
const (
maxNodes = 1
allowedNodemask = (1 << maxNodes) - 1
)
func copyInNodemask(t *kernel.Task, addr hostarch.Addr, maxnode uint32) (uint64, error) {
// "nodemask points to a bit mask of node IDs that contains up to maxnode
// bits. The bit mask size is rounded to the next multiple of
// sizeof(unsigned long), but the kernel will use bits only up to maxnode.
// A NULL value of nodemask or a maxnode value of zero specifies the empty
// set of nodes. If the value of maxnode is zero, the nodemask argument is
// ignored." - set_mempolicy(2). Unfortunately, most of this is inaccurate
// because of what appears to be a bug: mm/mempolicy.c:get_nodes() uses
// maxnode-1, not maxnode, as the number of bits.
bits := maxnode - 1
if bits > hostarch.PageSize*8 { // also handles overflow from maxnode == 0
return 0, linuxerr.EINVAL
}
if bits == 0 {
return 0, nil
}
// Copy in the whole nodemask.
numUint64 := (bits + 63) / 64
buf := t.CopyScratchBuffer(int(numUint64) * 8)
if _, err := t.CopyInBytes(addr, buf); err != nil {
return 0, err
}
val := hostarch.ByteOrder.Uint64(buf)
// Check that only allowed bits in the first unsigned long in the nodemask
// are set.
if val&^allowedNodemask != 0 {
return 0, linuxerr.EINVAL
}
// Check that all remaining bits in the nodemask are 0.
for i := 8; i < len(buf); i++ {
if buf[i] != 0 {
return 0, linuxerr.EINVAL
}
}
return val, nil
}
func copyOutNodemask(t *kernel.Task, addr hostarch.Addr, maxnode uint32, val uint64) error {
// mm/mempolicy.c:copy_nodes_to_user() also uses maxnode-1 as the number of
// bits.
bits := maxnode - 1
if bits > hostarch.PageSize*8 { // also handles overflow from maxnode == 0
return linuxerr.EINVAL
}
if bits == 0 {
return nil
}
// Copy out the first unsigned long in the nodemask.
buf := t.CopyScratchBuffer(8)
hostarch.ByteOrder.PutUint64(buf, val)
if _, err := t.CopyOutBytes(addr, buf); err != nil {
return err
}
// Zero out remaining unsigned longs in the nodemask.
if bits > 64 {
remAddr, ok := addr.AddLength(8)
if !ok {
return syserror.EFAULT
}
remUint64 := (bits - 1) / 64
if _, err := t.MemoryManager().ZeroOut(t, remAddr, int64(remUint64)*8, usermem.IOOpts{
AddressSpaceActive: true,
}); err != nil {
return err
}
}
return nil
}
// GetMempolicy implements the syscall get_mempolicy(2).
func GetMempolicy(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
mode := args[0].Pointer()
nodemask := args[1].Pointer()
maxnode := args[2].Uint()
addr := args[3].Pointer()
flags := args[4].Uint()
if flags&^(linux.MPOL_F_NODE|linux.MPOL_F_ADDR|linux.MPOL_F_MEMS_ALLOWED) != 0 {
return 0, nil, linuxerr.EINVAL
}
nodeFlag := flags&linux.MPOL_F_NODE != 0
addrFlag := flags&linux.MPOL_F_ADDR != 0
memsAllowed := flags&linux.MPOL_F_MEMS_ALLOWED != 0
// "EINVAL: The value specified by maxnode is less than the number of node
// IDs supported by the system." - get_mempolicy(2)
if nodemask != 0 && maxnode < maxNodes {
return 0, nil, linuxerr.EINVAL
}
// "If flags specifies MPOL_F_MEMS_ALLOWED [...], the mode argument is
// ignored and the set of nodes (memories) that the thread is allowed to
// specify in subsequent calls to mbind(2) or set_mempolicy(2) (in the
// absence of any mode flags) is returned in nodemask."
if memsAllowed {
// "It is not permitted to combine MPOL_F_MEMS_ALLOWED with either
// MPOL_F_ADDR or MPOL_F_NODE."
if nodeFlag || addrFlag {
return 0, nil, linuxerr.EINVAL
}
if err := copyOutNodemask(t, nodemask, maxnode, allowedNodemask); err != nil {
return 0, nil, err
}
return 0, nil, nil
}
// "If flags specifies MPOL_F_ADDR, then information is returned about the
// policy governing the memory address given in addr. ... If the mode
// argument is not NULL, then get_mempolicy() will store the policy mode
// and any optional mode flags of the requested NUMA policy in the location
// pointed to by this argument. If nodemask is not NULL, then the nodemask
// associated with the policy will be stored in the location pointed to by
// this argument."
if addrFlag {
policy, nodemaskVal, err := t.MemoryManager().NumaPolicy(addr)
if err != nil {
return 0, nil, err
}
if nodeFlag {
// "If flags specifies both MPOL_F_NODE and MPOL_F_ADDR,
// get_mempolicy() will return the node ID of the node on which the
// address addr is allocated into the location pointed to by mode.
// If no page has yet been allocated for the specified address,
// get_mempolicy() will allocate a page as if the thread had
// performed a read (load) access to that address, and return the
// ID of the node where that page was allocated."
buf := t.CopyScratchBuffer(1)
_, err := t.CopyInBytes(addr, buf)
if err != nil {
return 0, nil, err
}
policy = linux.MPOL_DEFAULT // maxNodes == 1
}
if mode != 0 {
if _, err := policy.CopyOut(t, mode); err != nil {
return 0, nil, err
}
}
if nodemask != 0 {
if err := copyOutNodemask(t, nodemask, maxnode, nodemaskVal); err != nil {
return 0, nil, err
}
}
return 0, nil, nil
}
// "EINVAL: ... flags specified MPOL_F_ADDR and addr is NULL, or flags did
// not specify MPOL_F_ADDR and addr is not NULL." This is partially
// inaccurate: if flags specifies MPOL_F_ADDR,
// mm/mempolicy.c:do_get_mempolicy() doesn't special-case NULL; it will
// just (usually) fail to find a VMA at address 0 and return EFAULT.
if addr != 0 {
return 0, nil, linuxerr.EINVAL
}
// "If flags is specified as 0, then information about the calling thread's
// default policy (as set by set_mempolicy(2)) is returned, in the buffers
// pointed to by mode and nodemask. ... If flags specifies MPOL_F_NODE, but
// not MPOL_F_ADDR, and the thread's current policy is MPOL_INTERLEAVE,
// then get_mempolicy() will return in the location pointed to by a
// non-NULL mode argument, the node ID of the next node that will be used
// for interleaving of internal kernel pages allocated on behalf of the
// thread."
policy, nodemaskVal := t.NumaPolicy()
if nodeFlag {
if policy&^linux.MPOL_MODE_FLAGS != linux.MPOL_INTERLEAVE {
return 0, nil, linuxerr.EINVAL
}
policy = linux.MPOL_DEFAULT // maxNodes == 1
}
if mode != 0 {
if _, err := policy.CopyOut(t, mode); err != nil {
return 0, nil, err
}
}
if nodemask != 0 {
if err := copyOutNodemask(t, nodemask, maxnode, nodemaskVal); err != nil {
return 0, nil, err
}
}
return 0, nil, nil
}
// SetMempolicy implements the syscall set_mempolicy(2).
func SetMempolicy(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
modeWithFlags := linux.NumaPolicy(args[0].Int())
nodemask := args[1].Pointer()
maxnode := args[2].Uint()
modeWithFlags, nodemaskVal, err := copyInMempolicyNodemask(t, modeWithFlags, nodemask, maxnode)
if err != nil {
return 0, nil, err
}
t.SetNumaPolicy(modeWithFlags, nodemaskVal)
return 0, nil, nil
}
// Mbind implements the syscall mbind(2).
func Mbind(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
addr := args[0].Pointer()
length := args[1].Uint64()
mode := linux.NumaPolicy(args[2].Int())
nodemask := args[3].Pointer()
maxnode := args[4].Uint()
flags := args[5].Uint()
if flags&^linux.MPOL_MF_VALID != 0 {
return 0, nil, linuxerr.EINVAL
}
// "If MPOL_MF_MOVE_ALL is passed in flags ... [the] calling thread must be
// privileged (CAP_SYS_NICE) to use this flag." - mbind(2)
if flags&linux.MPOL_MF_MOVE_ALL != 0 && !t.HasCapability(linux.CAP_SYS_NICE) {
return 0, nil, syserror.EPERM
}
mode, nodemaskVal, err := copyInMempolicyNodemask(t, mode, nodemask, maxnode)
if err != nil {
return 0, nil, err
}
// Since we claim to have only a single node, all flags can be ignored
// (since all pages must already be on that single node).
err = t.MemoryManager().SetNumaPolicy(addr, length, mode, nodemaskVal)
return 0, nil, err
}
func copyInMempolicyNodemask(t *kernel.Task, modeWithFlags linux.NumaPolicy, nodemask hostarch.Addr, maxnode uint32) (linux.NumaPolicy, uint64, error) {
flags := linux.NumaPolicy(modeWithFlags & linux.MPOL_MODE_FLAGS)
mode := linux.NumaPolicy(modeWithFlags &^ linux.MPOL_MODE_FLAGS)
if flags == linux.MPOL_MODE_FLAGS {
// Can't specify both mode flags simultaneously.
return 0, 0, linuxerr.EINVAL
}
if mode < 0 || mode >= linux.MPOL_MAX {
// Must specify a valid mode.
return 0, 0, linuxerr.EINVAL
}
var nodemaskVal uint64
if nodemask != 0 {
var err error
nodemaskVal, err = copyInNodemask(t, nodemask, maxnode)
if err != nil {
return 0, 0, err
}
}
switch mode {
case linux.MPOL_DEFAULT:
// "nodemask must be specified as NULL." - set_mempolicy(2). This is inaccurate;
// Linux allows a nodemask to be specified, as long as it is empty.
if nodemaskVal != 0 {
return 0, 0, linuxerr.EINVAL
}
case linux.MPOL_BIND, linux.MPOL_INTERLEAVE:
// These require a non-empty nodemask.
if nodemaskVal == 0 {
return 0, 0, linuxerr.EINVAL
}
case linux.MPOL_PREFERRED:
// This permits an empty nodemask, as long as no flags are set.
if nodemaskVal == 0 && flags != 0 {
return 0, 0, linuxerr.EINVAL
}
case linux.MPOL_LOCAL:
// This requires an empty nodemask and no flags set ...
if nodemaskVal != 0 || flags != 0 {
return 0, 0, linuxerr.EINVAL
}
// ... and is implemented as MPOL_PREFERRED.
mode = linux.MPOL_PREFERRED
default:
// Unknown mode, which we should have rejected above.
panic(fmt.Sprintf("unknown mode: %v", mode))
}
return mode | flags, nodemaskVal, nil
}
|