summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/syscalls/linux/sys_futex.go
blob: f04d7885688d8989ea667c42c878f209a7f00e58 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package linux

import (
	"time"

	"gvisor.dev/gvisor/pkg/abi/linux"
	"gvisor.dev/gvisor/pkg/sentry/arch"
	"gvisor.dev/gvisor/pkg/sentry/kernel"
	ktime "gvisor.dev/gvisor/pkg/sentry/kernel/time"
	"gvisor.dev/gvisor/pkg/syserror"
	"gvisor.dev/gvisor/pkg/usermem"
)

// futexWaitRestartBlock encapsulates the state required to restart futex(2)
// via restart_syscall(2).
//
// +stateify savable
type futexWaitRestartBlock struct {
	duration time.Duration

	// addr stored as uint64 since uintptr is not save-able.
	addr    uint64
	private bool
	val     uint32
	mask    uint32
}

// Restart implements kernel.SyscallRestartBlock.Restart.
func (f *futexWaitRestartBlock) Restart(t *kernel.Task) (uintptr, error) {
	return futexWaitDuration(t, f.duration, false, usermem.Addr(f.addr), f.private, f.val, f.mask)
}

// futexWaitAbsolute performs a FUTEX_WAIT_BITSET, blocking until the wait is
// complete.
//
// The wait blocks forever if forever is true, otherwise it blocks until ts.
//
// If blocking is interrupted, the syscall is restarted with the original
// arguments.
func futexWaitAbsolute(t *kernel.Task, clockRealtime bool, ts linux.Timespec, forever bool, addr usermem.Addr, private bool, val, mask uint32) (uintptr, error) {
	w := t.FutexWaiter()
	err := t.Futex().WaitPrepare(w, t, addr, private, val, mask)
	if err != nil {
		return 0, err
	}

	if forever {
		err = t.Block(w.C)
	} else if clockRealtime {
		notifier, tchan := ktime.NewChannelNotifier()
		timer := ktime.NewTimer(t.Kernel().RealtimeClock(), notifier)
		timer.Swap(ktime.Setting{
			Enabled: true,
			Next:    ktime.FromTimespec(ts),
		})
		err = t.BlockWithTimer(w.C, tchan)
		timer.Destroy()
	} else {
		err = t.BlockWithDeadline(w.C, true, ktime.FromTimespec(ts))
	}

	t.Futex().WaitComplete(w)
	return 0, syserror.ConvertIntr(err, kernel.ERESTARTSYS)
}

// futexWaitDuration performs a FUTEX_WAIT, blocking until the wait is
// complete.
//
// The wait blocks forever if forever is true, otherwise is blocks for
// duration.
//
// If blocking is interrupted, forever determines how to restart the
// syscall. If forever is true, the syscall is restarted with the original
// arguments. If forever is false, duration is a relative timeout and the
// syscall is restarted with the remaining timeout.
func futexWaitDuration(t *kernel.Task, duration time.Duration, forever bool, addr usermem.Addr, private bool, val, mask uint32) (uintptr, error) {
	w := t.FutexWaiter()
	err := t.Futex().WaitPrepare(w, t, addr, private, val, mask)
	if err != nil {
		return 0, err
	}

	remaining, err := t.BlockWithTimeout(w.C, !forever, duration)
	t.Futex().WaitComplete(w)
	if err == nil {
		return 0, nil
	}

	// The wait was unsuccessful for some reason other than interruption. Simply
	// forward the error.
	if err != syserror.ErrInterrupted {
		return 0, err
	}

	// The wait was interrupted and we need to restart. Decide how.

	// The wait duration was absolute, restart with the original arguments.
	if forever {
		return 0, kernel.ERESTARTSYS
	}

	// The wait duration was relative, restart with the remaining duration.
	t.SetSyscallRestartBlock(&futexWaitRestartBlock{
		duration: remaining,
		addr:     uint64(addr),
		private:  private,
		val:      val,
		mask:     mask,
	})
	return 0, kernel.ERESTART_RESTARTBLOCK
}

func futexLockPI(t *kernel.Task, ts linux.Timespec, forever bool, addr usermem.Addr, private bool) error {
	w := t.FutexWaiter()
	locked, err := t.Futex().LockPI(w, t, addr, uint32(t.ThreadID()), private, false)
	if err != nil {
		return err
	}
	if locked {
		// Futex acquired, we're done!
		return nil
	}

	if forever {
		err = t.Block(w.C)
	} else {
		notifier, tchan := ktime.NewChannelNotifier()
		timer := ktime.NewTimer(t.Kernel().RealtimeClock(), notifier)
		timer.Swap(ktime.Setting{
			Enabled: true,
			Next:    ktime.FromTimespec(ts),
		})
		err = t.BlockWithTimer(w.C, tchan)
		timer.Destroy()
	}

	t.Futex().WaitComplete(w)
	return syserror.ConvertIntr(err, kernel.ERESTARTSYS)
}

func tryLockPI(t *kernel.Task, addr usermem.Addr, private bool) error {
	w := t.FutexWaiter()
	locked, err := t.Futex().LockPI(w, t, addr, uint32(t.ThreadID()), private, true)
	if err != nil {
		return err
	}
	if !locked {
		return syserror.EWOULDBLOCK
	}
	return nil
}

// Futex implements linux syscall futex(2).
// It provides a method for a program to wait for a value at a given address to
// change, and a method to wake up anyone waiting on a particular address.
func Futex(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
	addr := args[0].Pointer()
	futexOp := args[1].Int()
	val := int(args[2].Int())
	nreq := int(args[3].Int())
	timeout := args[3].Pointer()
	naddr := args[4].Pointer()
	val3 := args[5].Int()

	cmd := futexOp &^ (linux.FUTEX_PRIVATE_FLAG | linux.FUTEX_CLOCK_REALTIME)
	private := (futexOp & linux.FUTEX_PRIVATE_FLAG) != 0
	clockRealtime := (futexOp & linux.FUTEX_CLOCK_REALTIME) == linux.FUTEX_CLOCK_REALTIME
	mask := uint32(val3)

	switch cmd {
	case linux.FUTEX_WAIT, linux.FUTEX_WAIT_BITSET:
		// WAIT{_BITSET} wait forever if the timeout isn't passed.
		forever := (timeout == 0)

		var timespec linux.Timespec
		if !forever {
			var err error
			timespec, err = copyTimespecIn(t, timeout)
			if err != nil {
				return 0, nil, err
			}
		}

		switch cmd {
		case linux.FUTEX_WAIT:
			// WAIT uses a relative timeout.
			mask = linux.FUTEX_BITSET_MATCH_ANY
			var timeoutDur time.Duration
			if !forever {
				timeoutDur = time.Duration(timespec.ToNsecCapped()) * time.Nanosecond
			}
			n, err := futexWaitDuration(t, timeoutDur, forever, addr, private, uint32(val), mask)
			return n, nil, err

		case linux.FUTEX_WAIT_BITSET:
			// WAIT_BITSET uses an absolute timeout which is either
			// CLOCK_MONOTONIC or CLOCK_REALTIME.
			if mask == 0 {
				return 0, nil, syserror.EINVAL
			}
			n, err := futexWaitAbsolute(t, clockRealtime, timespec, forever, addr, private, uint32(val), mask)
			return n, nil, err
		default:
			panic("unreachable")
		}

	case linux.FUTEX_WAKE:
		mask = ^uint32(0)
		fallthrough

	case linux.FUTEX_WAKE_BITSET:
		if mask == 0 {
			return 0, nil, syserror.EINVAL
		}
		if val <= 0 {
			// The Linux kernel wakes one waiter even if val is
			// non-positive.
			val = 1
		}
		n, err := t.Futex().Wake(t, addr, private, mask, val)
		return uintptr(n), nil, err

	case linux.FUTEX_REQUEUE:
		n, err := t.Futex().Requeue(t, addr, naddr, private, val, nreq)
		return uintptr(n), nil, err

	case linux.FUTEX_CMP_REQUEUE:
		// 'val3' contains the value to be checked at 'addr' and
		// 'val' is the number of waiters that should be woken up.
		nval := uint32(val3)
		n, err := t.Futex().RequeueCmp(t, addr, naddr, private, nval, val, nreq)
		return uintptr(n), nil, err

	case linux.FUTEX_WAKE_OP:
		op := uint32(val3)
		if val <= 0 {
			// The Linux kernel wakes one waiter even if val is
			// non-positive.
			val = 1
		}
		n, err := t.Futex().WakeOp(t, addr, naddr, private, val, nreq, op)
		return uintptr(n), nil, err

	case linux.FUTEX_LOCK_PI:
		forever := (timeout == 0)

		var timespec linux.Timespec
		if !forever {
			var err error
			timespec, err = copyTimespecIn(t, timeout)
			if err != nil {
				return 0, nil, err
			}
		}
		err := futexLockPI(t, timespec, forever, addr, private)
		return 0, nil, err

	case linux.FUTEX_TRYLOCK_PI:
		err := tryLockPI(t, addr, private)
		return 0, nil, err

	case linux.FUTEX_UNLOCK_PI:
		err := t.Futex().UnlockPI(t, addr, uint32(t.ThreadID()), private)
		return 0, nil, err

	case linux.FUTEX_WAIT_REQUEUE_PI, linux.FUTEX_CMP_REQUEUE_PI:
		t.Kernel().EmitUnimplementedEvent(t)
		return 0, nil, syserror.ENOSYS

	default:
		// We don't even know about this command.
		return 0, nil, syserror.ENOSYS
	}
}

// SetRobustList implements linux syscall set_robust_list(2).
func SetRobustList(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
	// Despite the syscall using the name 'pid' for this variable, it is
	// very much a tid.
	head := args[0].Pointer()
	length := args[1].SizeT()

	if length != uint(linux.SizeOfRobustListHead) {
		return 0, nil, syserror.EINVAL
	}
	t.SetRobustList(head)
	return 0, nil, nil
}

// GetRobustList implements linux syscall get_robust_list(2).
func GetRobustList(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
	// Despite the syscall using the name 'pid' for this variable, it is
	// very much a tid.
	tid := args[0].Int()
	head := args[1].Pointer()
	size := args[2].Pointer()

	if tid < 0 {
		return 0, nil, syserror.EINVAL
	}

	ot := t
	if tid != 0 {
		if ot = t.PIDNamespace().TaskWithID(kernel.ThreadID(tid)); ot == nil {
			return 0, nil, syserror.ESRCH
		}
	}

	// Copy out head pointer.
	if _, err := t.CopyOut(head, uint64(ot.GetRobustList())); err != nil {
		return 0, nil, err
	}

	// Copy out size, which is a constant.
	if _, err := t.CopyOut(size, uint64(linux.SizeOfRobustListHead)); err != nil {
		return 0, nil, err
	}

	return 0, nil, nil
}