1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package transport
import (
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/syserr"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/waiter"
)
// UniqueIDProvider generates a sequence of unique identifiers useful for,
// among other things, lock ordering.
type UniqueIDProvider interface {
// UniqueID returns a new unique identifier.
UniqueID() uint64
}
// A ConnectingEndpoint is a connectioned unix endpoint that is attempting to
// establish a bidirectional connection with a BoundEndpoint.
type ConnectingEndpoint interface {
// ID returns the endpoint's globally unique identifier. This identifier
// must be used to determine locking order if more than one endpoint is
// to be locked in the same codepath. The endpoint with the smaller
// identifier must be locked before endpoints with larger identifiers.
ID() uint64
// Passcred implements socket.Credentialer.Passcred.
Passcred() bool
// Type returns the socket type, typically either SockStream or
// SockSeqpacket. The connection attempt must be aborted if this
// value doesn't match the ConnectableEndpoint's type.
Type() linux.SockType
// GetLocalAddress returns the bound path.
GetLocalAddress() (tcpip.FullAddress, *tcpip.Error)
// Locker protects the following methods. While locked, only the holder of
// the lock can change the return value of the protected methods.
sync.Locker
// Connected returns true iff the ConnectingEndpoint is in the connected
// state. ConnectingEndpoints can only be connected to a single endpoint,
// so the connection attempt must be aborted if this returns true.
Connected() bool
// Listening returns true iff the ConnectingEndpoint is in the listening
// state. ConnectingEndpoints cannot make connections while listening, so
// the connection attempt must be aborted if this returns true.
Listening() bool
// WaiterQueue returns a pointer to the endpoint's waiter queue.
WaiterQueue() *waiter.Queue
}
// connectionedEndpoint is a Unix-domain connected or connectable endpoint and implements
// ConnectingEndpoint, ConnectableEndpoint and tcpip.Endpoint.
//
// connectionedEndpoints must be in connected state in order to transfer data.
//
// This implementation includes STREAM and SEQPACKET Unix sockets created with
// socket(2), accept(2) or socketpair(2) and dgram unix sockets created with
// socketpair(2). See unix_connectionless.go for the implementation of DGRAM
// Unix sockets created with socket(2).
//
// The state is much simpler than a TCP endpoint, so it is not encoded
// explicitly. Instead we enforce the following invariants:
//
// receiver != nil, connected != nil => connected.
// path != "" && acceptedChan == nil => bound, not listening.
// path != "" && acceptedChan != nil => bound and listening.
//
// Only one of these will be true at any moment.
//
// +stateify savable
type connectionedEndpoint struct {
baseEndpoint
// id is the unique endpoint identifier. This is used exclusively for
// lock ordering within connect.
id uint64
// idGenerator is used to generate new unique endpoint identifiers.
idGenerator UniqueIDProvider
// stype is used by connecting sockets to ensure that they are the
// same type. The value is typically either tcpip.SockSeqpacket or
// tcpip.SockStream.
stype linux.SockType
// acceptedChan is per the TCP endpoint implementation. Note that the
// sockets in this channel are _already in the connected state_, and
// have another associated connectionedEndpoint.
//
// If nil, then no listen call has been made.
acceptedChan chan *connectionedEndpoint `state:".([]*connectionedEndpoint)"`
}
var (
_ = BoundEndpoint((*connectionedEndpoint)(nil))
_ = Endpoint((*connectionedEndpoint)(nil))
)
// NewConnectioned creates a new unbound connectionedEndpoint.
func NewConnectioned(ctx context.Context, stype linux.SockType, uid UniqueIDProvider) Endpoint {
return &connectionedEndpoint{
baseEndpoint: baseEndpoint{Queue: &waiter.Queue{}},
id: uid.UniqueID(),
idGenerator: uid,
stype: stype,
}
}
// NewPair allocates a new pair of connected unix-domain connectionedEndpoints.
func NewPair(ctx context.Context, stype linux.SockType, uid UniqueIDProvider) (Endpoint, Endpoint) {
a := &connectionedEndpoint{
baseEndpoint: baseEndpoint{Queue: &waiter.Queue{}},
id: uid.UniqueID(),
idGenerator: uid,
stype: stype,
}
b := &connectionedEndpoint{
baseEndpoint: baseEndpoint{Queue: &waiter.Queue{}},
id: uid.UniqueID(),
idGenerator: uid,
stype: stype,
}
q1 := &queue{ReaderQueue: a.Queue, WriterQueue: b.Queue, limit: initialLimit}
q1.EnableLeakCheck("transport.queue")
q2 := &queue{ReaderQueue: b.Queue, WriterQueue: a.Queue, limit: initialLimit}
q2.EnableLeakCheck("transport.queue")
if stype == linux.SOCK_STREAM {
a.receiver = &streamQueueReceiver{queueReceiver: queueReceiver{q1}}
b.receiver = &streamQueueReceiver{queueReceiver: queueReceiver{q2}}
} else {
a.receiver = &queueReceiver{q1}
b.receiver = &queueReceiver{q2}
}
q2.IncRef()
a.connected = &connectedEndpoint{
endpoint: b,
writeQueue: q2,
}
q1.IncRef()
b.connected = &connectedEndpoint{
endpoint: a,
writeQueue: q1,
}
return a, b
}
// NewExternal creates a new externally backed Endpoint. It behaves like a
// socketpair.
func NewExternal(ctx context.Context, stype linux.SockType, uid UniqueIDProvider, queue *waiter.Queue, receiver Receiver, connected ConnectedEndpoint) Endpoint {
return &connectionedEndpoint{
baseEndpoint: baseEndpoint{Queue: queue, receiver: receiver, connected: connected},
id: uid.UniqueID(),
idGenerator: uid,
stype: stype,
}
}
// ID implements ConnectingEndpoint.ID.
func (e *connectionedEndpoint) ID() uint64 {
return e.id
}
// Type implements ConnectingEndpoint.Type and Endpoint.Type.
func (e *connectionedEndpoint) Type() linux.SockType {
return e.stype
}
// WaiterQueue implements ConnectingEndpoint.WaiterQueue.
func (e *connectionedEndpoint) WaiterQueue() *waiter.Queue {
return e.Queue
}
// isBound returns true iff the connectionedEndpoint is bound (but not
// listening).
func (e *connectionedEndpoint) isBound() bool {
return e.path != "" && e.acceptedChan == nil
}
// Listening implements ConnectingEndpoint.Listening.
func (e *connectionedEndpoint) Listening() bool {
return e.acceptedChan != nil
}
// Close puts the connectionedEndpoint in a closed state and frees all
// resources associated with it.
//
// The socket will be a fresh state after a call to close and may be reused.
// That is, close may be used to "unbind" or "disconnect" the socket in error
// paths.
func (e *connectionedEndpoint) Close() {
e.Lock()
var c ConnectedEndpoint
var r Receiver
switch {
case e.Connected():
e.connected.CloseSend()
e.receiver.CloseRecv()
// Still have unread data? If yes, we set this into the write
// end so that the peer can get ECONNRESET) when it does read.
if e.receiver.RecvQueuedSize() > 0 {
e.connected.CloseUnread()
}
c = e.connected
r = e.receiver
e.connected = nil
e.receiver = nil
case e.isBound():
e.path = ""
case e.Listening():
close(e.acceptedChan)
for n := range e.acceptedChan {
n.Close()
}
e.acceptedChan = nil
e.path = ""
}
e.Unlock()
if c != nil {
c.CloseNotify()
c.Release()
}
if r != nil {
r.CloseNotify()
r.Release()
}
}
// BidirectionalConnect implements BoundEndpoint.BidirectionalConnect.
func (e *connectionedEndpoint) BidirectionalConnect(ctx context.Context, ce ConnectingEndpoint, returnConnect func(Receiver, ConnectedEndpoint)) *syserr.Error {
if ce.Type() != e.stype {
return syserr.ErrConnectionRefused
}
// Check if ce is e to avoid a deadlock.
if ce, ok := ce.(*connectionedEndpoint); ok && ce == e {
return syserr.ErrInvalidEndpointState
}
// Do a dance to safely acquire locks on both endpoints.
if e.id < ce.ID() {
e.Lock()
ce.Lock()
} else {
ce.Lock()
e.Lock()
}
// Check connecting state.
if ce.Connected() {
e.Unlock()
ce.Unlock()
return syserr.ErrAlreadyConnected
}
if ce.Listening() {
e.Unlock()
ce.Unlock()
return syserr.ErrInvalidEndpointState
}
// Check bound state.
if !e.Listening() {
e.Unlock()
ce.Unlock()
return syserr.ErrConnectionRefused
}
// Create a newly bound connectionedEndpoint.
ne := &connectionedEndpoint{
baseEndpoint: baseEndpoint{
path: e.path,
Queue: &waiter.Queue{},
},
id: e.idGenerator.UniqueID(),
idGenerator: e.idGenerator,
stype: e.stype,
}
readQueue := &queue{ReaderQueue: ce.WaiterQueue(), WriterQueue: ne.Queue, limit: initialLimit}
readQueue.EnableLeakCheck("transport.queue")
ne.connected = &connectedEndpoint{
endpoint: ce,
writeQueue: readQueue,
}
writeQueue := &queue{ReaderQueue: ne.Queue, WriterQueue: ce.WaiterQueue(), limit: initialLimit}
writeQueue.EnableLeakCheck("transport.queue")
if e.stype == linux.SOCK_STREAM {
ne.receiver = &streamQueueReceiver{queueReceiver: queueReceiver{readQueue: writeQueue}}
} else {
ne.receiver = &queueReceiver{readQueue: writeQueue}
}
select {
case e.acceptedChan <- ne:
// Commit state.
writeQueue.IncRef()
connected := &connectedEndpoint{
endpoint: ne,
writeQueue: writeQueue,
}
readQueue.IncRef()
if e.stype == linux.SOCK_STREAM {
returnConnect(&streamQueueReceiver{queueReceiver: queueReceiver{readQueue: readQueue}}, connected)
} else {
returnConnect(&queueReceiver{readQueue: readQueue}, connected)
}
// Notify can deadlock if we are holding these locks.
e.Unlock()
ce.Unlock()
// Notify on both ends.
e.Notify(waiter.EventIn)
ce.WaiterQueue().Notify(waiter.EventOut)
return nil
default:
// Busy; return ECONNREFUSED per spec.
ne.Close()
e.Unlock()
ce.Unlock()
return syserr.ErrConnectionRefused
}
}
// UnidirectionalConnect implements BoundEndpoint.UnidirectionalConnect.
func (e *connectionedEndpoint) UnidirectionalConnect(ctx context.Context) (ConnectedEndpoint, *syserr.Error) {
return nil, syserr.ErrConnectionRefused
}
// Connect attempts to directly connect to another Endpoint.
// Implements Endpoint.Connect.
func (e *connectionedEndpoint) Connect(ctx context.Context, server BoundEndpoint) *syserr.Error {
returnConnect := func(r Receiver, ce ConnectedEndpoint) {
e.receiver = r
e.connected = ce
}
return server.BidirectionalConnect(ctx, e, returnConnect)
}
// Listen starts listening on the connection.
func (e *connectionedEndpoint) Listen(backlog int) *syserr.Error {
e.Lock()
defer e.Unlock()
if e.Listening() {
// Adjust the size of the channel iff we can fix existing
// pending connections into the new one.
if len(e.acceptedChan) > backlog {
return syserr.ErrInvalidEndpointState
}
origChan := e.acceptedChan
e.acceptedChan = make(chan *connectionedEndpoint, backlog)
close(origChan)
for ep := range origChan {
e.acceptedChan <- ep
}
return nil
}
if !e.isBound() {
return syserr.ErrInvalidEndpointState
}
// Normal case.
e.acceptedChan = make(chan *connectionedEndpoint, backlog)
return nil
}
// Accept accepts a new connection.
func (e *connectionedEndpoint) Accept() (Endpoint, *syserr.Error) {
e.Lock()
defer e.Unlock()
if !e.Listening() {
return nil, syserr.ErrInvalidEndpointState
}
select {
case ne := <-e.acceptedChan:
return ne, nil
default:
// Nothing left.
return nil, syserr.ErrWouldBlock
}
}
// Bind binds the connection.
//
// For Unix connectionedEndpoints, this _only sets the address associated with
// the socket_. Work associated with sockets in the filesystem or finding those
// sockets must be done by a higher level.
//
// Bind will fail only if the socket is connected, bound or the passed address
// is invalid (the empty string).
func (e *connectionedEndpoint) Bind(addr tcpip.FullAddress, commit func() *syserr.Error) *syserr.Error {
e.Lock()
defer e.Unlock()
if e.isBound() || e.Listening() {
return syserr.ErrAlreadyBound
}
if addr.Addr == "" {
// The empty string is not permitted.
return syserr.ErrBadLocalAddress
}
if commit != nil {
if err := commit(); err != nil {
return err
}
}
// Save the bound address.
e.path = string(addr.Addr)
return nil
}
// SendMsg writes data and a control message to the endpoint's peer.
// This method does not block if the data cannot be written.
func (e *connectionedEndpoint) SendMsg(ctx context.Context, data [][]byte, c ControlMessages, to BoundEndpoint) (int64, *syserr.Error) {
// Stream sockets do not support specifying the endpoint. Seqpacket
// sockets ignore the passed endpoint.
if e.stype == linux.SOCK_STREAM && to != nil {
return 0, syserr.ErrNotSupported
}
return e.baseEndpoint.SendMsg(ctx, data, c, to)
}
// Readiness returns the current readiness of the connectionedEndpoint. For
// example, if waiter.EventIn is set, the connectionedEndpoint is immediately
// readable.
func (e *connectionedEndpoint) Readiness(mask waiter.EventMask) waiter.EventMask {
e.Lock()
defer e.Unlock()
ready := waiter.EventMask(0)
switch {
case e.Connected():
if mask&waiter.EventIn != 0 && e.receiver.Readable() {
ready |= waiter.EventIn
}
if mask&waiter.EventOut != 0 && e.connected.Writable() {
ready |= waiter.EventOut
}
case e.Listening():
if mask&waiter.EventIn != 0 && len(e.acceptedChan) > 0 {
ready |= waiter.EventIn
}
}
return ready
}
// State implements socket.Socket.State.
func (e *connectionedEndpoint) State() uint32 {
if e.Connected() {
return linux.SS_CONNECTED
}
return linux.SS_UNCONNECTED
}
|