summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/socket/epsocket/epsocket.go
blob: e90ef4835aebbc2ce189119fe785b1f50d37290d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Package epsocket provides an implementation of the socket.Socket interface
// that is backed by a tcpip.Endpoint.
//
// It does not depend on any particular endpoint implementation, and thus can
// be used to expose certain endpoints to the sentry while leaving others out,
// for example, TCP endpoints and Unix-domain endpoints.
//
// Lock ordering: netstack => mm: ioSequencePayload copies user memory inside
// tcpip.Endpoint.Write(). Netstack is allowed to (and does) hold locks during
// this operation.
package epsocket

import (
	"bytes"
	"math"
	"strings"
	"sync"
	"syscall"

	"gvisor.googlesource.com/gvisor/pkg/abi/linux"
	"gvisor.googlesource.com/gvisor/pkg/binary"
	"gvisor.googlesource.com/gvisor/pkg/metric"
	"gvisor.googlesource.com/gvisor/pkg/sentry/arch"
	"gvisor.googlesource.com/gvisor/pkg/sentry/context"
	"gvisor.googlesource.com/gvisor/pkg/sentry/fs"
	"gvisor.googlesource.com/gvisor/pkg/sentry/fs/fsutil"
	"gvisor.googlesource.com/gvisor/pkg/sentry/inet"
	"gvisor.googlesource.com/gvisor/pkg/sentry/kernel"
	"gvisor.googlesource.com/gvisor/pkg/sentry/kernel/kdefs"
	ktime "gvisor.googlesource.com/gvisor/pkg/sentry/kernel/time"
	"gvisor.googlesource.com/gvisor/pkg/sentry/safemem"
	"gvisor.googlesource.com/gvisor/pkg/sentry/socket"
	"gvisor.googlesource.com/gvisor/pkg/sentry/socket/unix/transport"
	"gvisor.googlesource.com/gvisor/pkg/sentry/usermem"
	"gvisor.googlesource.com/gvisor/pkg/syserr"
	"gvisor.googlesource.com/gvisor/pkg/syserror"
	"gvisor.googlesource.com/gvisor/pkg/tcpip"
	"gvisor.googlesource.com/gvisor/pkg/tcpip/buffer"
	"gvisor.googlesource.com/gvisor/pkg/tcpip/stack"
	"gvisor.googlesource.com/gvisor/pkg/waiter"
)

func mustCreateMetric(name, description string) *tcpip.StatCounter {
	var cm tcpip.StatCounter
	metric.MustRegisterCustomUint64Metric(name, false /* sync */, description, cm.Value)
	return &cm
}

// Metrics contains metrics exported by netstack.
var Metrics = tcpip.Stats{
	UnknownProtocolRcvdPackets: mustCreateMetric("/netstack/unknown_protocol_received_packets", "Number of packets received by netstack that were for an unknown or unsupported protocol."),
	MalformedRcvdPackets:       mustCreateMetric("/netstack/malformed_received_packets", "Number of packets received by netstack that were deemed malformed."),
	DroppedPackets:             mustCreateMetric("/netstack/dropped_packets", "Number of packets dropped by netstack due to full queues."),
	IP: tcpip.IPStats{
		PacketsReceived:          mustCreateMetric("/netstack/ip/packets_received", "Total number of IP packets received from the link layer in nic.DeliverNetworkPacket."),
		InvalidAddressesReceived: mustCreateMetric("/netstack/ip/invalid_addresses_received", "Total number of IP packets received with an unknown or invalid destination address."),
		PacketsDelivered:         mustCreateMetric("/netstack/ip/packets_delivered", "Total number of incoming IP packets that are successfully delivered to the transport layer via HandlePacket."),
		PacketsSent:              mustCreateMetric("/netstack/ip/packets_sent", "Total number of IP packets sent via WritePacket."),
		OutgoingPacketErrors:     mustCreateMetric("/netstack/ip/outgoing_packet_errors", "Total number of IP packets which failed to write to a link-layer endpoint."),
	},
	TCP: tcpip.TCPStats{
		ActiveConnectionOpenings:  mustCreateMetric("/netstack/tcp/active_connection_openings", "Number of connections opened successfully via Connect."),
		PassiveConnectionOpenings: mustCreateMetric("/netstack/tcp/passive_connection_openings", "Number of connections opened successfully via Listen."),
		FailedConnectionAttempts:  mustCreateMetric("/netstack/tcp/failed_connection_attempts", "Number of calls to Connect or Listen (active and passive openings, respectively) that end in an error."),
		ValidSegmentsReceived:     mustCreateMetric("/netstack/tcp/valid_segments_received", "Number of TCP segments received that the transport layer successfully parsed."),
		InvalidSegmentsReceived:   mustCreateMetric("/netstack/tcp/invalid_segments_received", "Number of TCP segments received that the transport layer could not parse."),
		SegmentsSent:              mustCreateMetric("/netstack/tcp/segments_sent", "Number of TCP segments sent."),
		ResetsSent:                mustCreateMetric("/netstack/tcp/resets_sent", "Number of TCP resets sent."),
		ResetsReceived:            mustCreateMetric("/netstack/tcp/resets_received", "Number of TCP resets received."),
	},
	UDP: tcpip.UDPStats{
		PacketsReceived:          mustCreateMetric("/netstack/udp/packets_received", "Number of UDP datagrams received via HandlePacket."),
		UnknownPortErrors:        mustCreateMetric("/netstack/udp/unknown_port_errors", "Number of incoming UDP datagrams dropped because they did not have a known destination port."),
		ReceiveBufferErrors:      mustCreateMetric("/netstack/udp/receive_buffer_errors", "Number of incoming UDP datagrams dropped due to the receiving buffer being in an invalid state."),
		MalformedPacketsReceived: mustCreateMetric("/netstack/udp/malformed_packets_received", "Number of incoming UDP datagrams dropped due to the UDP header being in a malformed state."),
		PacketsSent:              mustCreateMetric("/netstack/udp/packets_sent", "Number of UDP datagrams sent via sendUDP."),
	},
}

const sizeOfInt32 int = 4

var errStackType = syserr.New("expected but did not receive an epsocket.Stack", linux.EINVAL)

// ntohs converts a 16-bit number from network byte order to host byte order. It
// assumes that the host is little endian.
func ntohs(v uint16) uint16 {
	return v<<8 | v>>8
}

// htons converts a 16-bit number from host byte order to network byte order. It
// assumes that the host is little endian.
func htons(v uint16) uint16 {
	return ntohs(v)
}

// commonEndpoint represents the intersection of a tcpip.Endpoint and a
// transport.Endpoint.
type commonEndpoint interface {
	// GetLocalAddress implements tcpip.Endpoint.GetLocalAddress and
	// transport.Endpoint.GetLocalAddress.
	GetLocalAddress() (tcpip.FullAddress, *tcpip.Error)

	// GetRemoteAddress implements tcpip.Endpoint.GetRemoteAddress and
	// transport.Endpoint.GetRemoteAddress.
	GetRemoteAddress() (tcpip.FullAddress, *tcpip.Error)

	// Readiness implements tcpip.Endpoint.Readiness and
	// transport.Endpoint.Readiness.
	Readiness(mask waiter.EventMask) waiter.EventMask

	// SetSockOpt implements tcpip.Endpoint.SetSockOpt and
	// transport.Endpoint.SetSockOpt.
	SetSockOpt(interface{}) *tcpip.Error

	// GetSockOpt implements tcpip.Endpoint.GetSockOpt and
	// transport.Endpoint.GetSockOpt.
	GetSockOpt(interface{}) *tcpip.Error
}

// SocketOperations encapsulates all the state needed to represent a network stack
// endpoint in the kernel context.
//
// +stateify savable
type SocketOperations struct {
	socket.ReceiveTimeout
	fsutil.PipeSeek      `state:"nosave"`
	fsutil.NotDirReaddir `state:"nosave"`
	fsutil.NoFsync       `state:"nosave"`
	fsutil.NoopFlush     `state:"nosave"`
	fsutil.NoMMap        `state:"nosave"`
	*waiter.Queue

	family   int
	Endpoint tcpip.Endpoint
	skType   transport.SockType

	// readMu protects access to readView, control, and sender.
	readMu   sync.Mutex `state:"nosave"`
	readView buffer.View
	readCM   tcpip.ControlMessages
	sender   tcpip.FullAddress
}

// New creates a new endpoint socket.
func New(t *kernel.Task, family int, skType transport.SockType, queue *waiter.Queue, endpoint tcpip.Endpoint) *fs.File {
	dirent := socket.NewDirent(t, epsocketDevice)
	defer dirent.DecRef()
	return fs.NewFile(t, dirent, fs.FileFlags{Read: true, Write: true}, &SocketOperations{
		Queue:    queue,
		family:   family,
		Endpoint: endpoint,
		skType:   skType,
	})
}

var sockAddrInetSize = int(binary.Size(linux.SockAddrInet{}))
var sockAddrInet6Size = int(binary.Size(linux.SockAddrInet6{}))

// GetAddress reads an sockaddr struct from the given address and converts it
// to the FullAddress format. It supports AF_UNIX, AF_INET and AF_INET6
// addresses.
func GetAddress(sfamily int, addr []byte) (tcpip.FullAddress, *syserr.Error) {
	// Make sure we have at least 2 bytes for the address family.
	if len(addr) < 2 {
		return tcpip.FullAddress{}, syserr.ErrInvalidArgument
	}

	family := usermem.ByteOrder.Uint16(addr)
	if family != uint16(sfamily) {
		return tcpip.FullAddress{}, syserr.ErrAddressFamilyNotSupported
	}

	// Get the rest of the fields based on the address family.
	switch family {
	case linux.AF_UNIX:
		path := addr[2:]
		if len(path) > linux.UnixPathMax {
			return tcpip.FullAddress{}, syserr.ErrInvalidArgument
		}
		// Drop the terminating NUL (if one exists) and everything after
		// it for filesystem (non-abstract) addresses.
		if len(path) > 0 && path[0] != 0 {
			if n := bytes.IndexByte(path[1:], 0); n >= 0 {
				path = path[:n+1]
			}
		}
		return tcpip.FullAddress{
			Addr: tcpip.Address(path),
		}, nil

	case linux.AF_INET:
		var a linux.SockAddrInet
		if len(addr) < sockAddrInetSize {
			return tcpip.FullAddress{}, syserr.ErrBadAddress
		}
		binary.Unmarshal(addr[:sockAddrInetSize], usermem.ByteOrder, &a)

		out := tcpip.FullAddress{
			Addr: tcpip.Address(a.Addr[:]),
			Port: ntohs(a.Port),
		}
		if out.Addr == "\x00\x00\x00\x00" {
			out.Addr = ""
		}
		return out, nil

	case linux.AF_INET6:
		var a linux.SockAddrInet6
		if len(addr) < sockAddrInet6Size {
			return tcpip.FullAddress{}, syserr.ErrBadAddress
		}
		binary.Unmarshal(addr[:sockAddrInet6Size], usermem.ByteOrder, &a)

		out := tcpip.FullAddress{
			Addr: tcpip.Address(a.Addr[:]),
			Port: ntohs(a.Port),
		}
		if isLinkLocal(out.Addr) {
			out.NIC = tcpip.NICID(a.Scope_id)
		}
		if out.Addr == tcpip.Address(strings.Repeat("\x00", 16)) {
			out.Addr = ""
		}
		return out, nil

	default:
		return tcpip.FullAddress{}, syserr.ErrAddressFamilyNotSupported
	}
}

func (s *SocketOperations) isPacketBased() bool {
	return s.skType == linux.SOCK_DGRAM || s.skType == linux.SOCK_SEQPACKET || s.skType == linux.SOCK_RDM
}

// fetchReadView updates the readView field of the socket if it's currently
// empty. It assumes that the socket is locked.
func (s *SocketOperations) fetchReadView() *syserr.Error {
	if len(s.readView) > 0 {
		return nil
	}

	s.readView = nil
	s.sender = tcpip.FullAddress{}

	v, cms, err := s.Endpoint.Read(&s.sender)
	if err != nil {
		return syserr.TranslateNetstackError(err)
	}

	s.readView = v
	s.readCM = cms

	return nil
}

// Release implements fs.FileOperations.Release.
func (s *SocketOperations) Release() {
	s.Endpoint.Close()
}

// Read implements fs.FileOperations.Read.
func (s *SocketOperations) Read(ctx context.Context, _ *fs.File, dst usermem.IOSequence, _ int64) (int64, error) {
	if dst.NumBytes() == 0 {
		return 0, nil
	}
	n, _, _, _, err := s.nonBlockingRead(ctx, dst, false, false, false)
	if err == syserr.ErrWouldBlock {
		return int64(n), syserror.ErrWouldBlock
	}
	if err != nil {
		return 0, err.ToError()
	}
	return int64(n), nil
}

// ioSequencePayload implements tcpip.Payload. It copies user memory bytes on demand
// based on the requested size.
type ioSequencePayload struct {
	ctx context.Context
	src usermem.IOSequence
}

// Get implements tcpip.Payload.
func (i *ioSequencePayload) Get(size int) ([]byte, *tcpip.Error) {
	if size > i.Size() {
		size = i.Size()
	}
	v := buffer.NewView(size)
	if _, err := i.src.CopyIn(i.ctx, v); err != nil {
		return nil, tcpip.ErrBadAddress
	}
	return v, nil
}

// Size implements tcpip.Payload.
func (i *ioSequencePayload) Size() int {
	return int(i.src.NumBytes())
}

// Write implements fs.FileOperations.Write.
func (s *SocketOperations) Write(ctx context.Context, _ *fs.File, src usermem.IOSequence, _ int64) (int64, error) {
	f := &ioSequencePayload{ctx: ctx, src: src}
	n, resCh, err := s.Endpoint.Write(f, tcpip.WriteOptions{})
	if err == tcpip.ErrWouldBlock {
		return int64(n), syserror.ErrWouldBlock
	}

	if resCh != nil {
		t := ctx.(*kernel.Task)
		if err := t.Block(resCh); err != nil {
			return int64(n), syserr.FromError(err).ToError()
		}

		n, _, err = s.Endpoint.Write(f, tcpip.WriteOptions{})
		return int64(n), syserr.TranslateNetstackError(err).ToError()
	}

	return int64(n), syserr.TranslateNetstackError(err).ToError()
}

// Readiness returns a mask of ready events for socket s.
func (s *SocketOperations) Readiness(mask waiter.EventMask) waiter.EventMask {
	r := s.Endpoint.Readiness(mask)

	// Check our cached value iff the caller asked for readability and the
	// endpoint itself is currently not readable.
	if (mask & ^r & waiter.EventIn) != 0 {
		s.readMu.Lock()
		if len(s.readView) > 0 {
			r |= waiter.EventIn
		}
		s.readMu.Unlock()
	}

	return r
}

// Connect implements the linux syscall connect(2) for sockets backed by
// tpcip.Endpoint.
func (s *SocketOperations) Connect(t *kernel.Task, sockaddr []byte, blocking bool) *syserr.Error {
	addr, err := GetAddress(s.family, sockaddr)
	if err != nil {
		return err
	}

	// Always return right away in the non-blocking case.
	if !blocking {
		return syserr.TranslateNetstackError(s.Endpoint.Connect(addr))
	}

	// Register for notification when the endpoint becomes writable, then
	// initiate the connection.
	e, ch := waiter.NewChannelEntry(nil)
	s.EventRegister(&e, waiter.EventOut)
	defer s.EventUnregister(&e)

	if err := s.Endpoint.Connect(addr); err != tcpip.ErrConnectStarted && err != tcpip.ErrAlreadyConnecting {
		return syserr.TranslateNetstackError(err)
	}

	// It's pending, so we have to wait for a notification, and fetch the
	// result once the wait completes.
	if err := t.Block(ch); err != nil {
		return syserr.FromError(err)
	}

	// Call Connect() again after blocking to find connect's result.
	return syserr.TranslateNetstackError(s.Endpoint.Connect(addr))
}

// Bind implements the linux syscall bind(2) for sockets backed by
// tcpip.Endpoint.
func (s *SocketOperations) Bind(t *kernel.Task, sockaddr []byte) *syserr.Error {
	addr, err := GetAddress(s.family, sockaddr)
	if err != nil {
		return err
	}

	// Issue the bind request to the endpoint.
	return syserr.TranslateNetstackError(s.Endpoint.Bind(addr, nil))
}

// Listen implements the linux syscall listen(2) for sockets backed by
// tcpip.Endpoint.
func (s *SocketOperations) Listen(t *kernel.Task, backlog int) *syserr.Error {
	return syserr.TranslateNetstackError(s.Endpoint.Listen(backlog))
}

// blockingAccept implements a blocking version of accept(2), that is, if no
// connections are ready to be accept, it will block until one becomes ready.
func (s *SocketOperations) blockingAccept(t *kernel.Task) (tcpip.Endpoint, *waiter.Queue, *syserr.Error) {
	// Register for notifications.
	e, ch := waiter.NewChannelEntry(nil)
	s.EventRegister(&e, waiter.EventIn)
	defer s.EventUnregister(&e)

	// Try to accept the connection again; if it fails, then wait until we
	// get a notification.
	for {
		if ep, wq, err := s.Endpoint.Accept(); err != tcpip.ErrWouldBlock {
			return ep, wq, syserr.TranslateNetstackError(err)
		}

		if err := t.Block(ch); err != nil {
			return nil, nil, syserr.FromError(err)
		}
	}
}

// Accept implements the linux syscall accept(2) for sockets backed by
// tcpip.Endpoint.
func (s *SocketOperations) Accept(t *kernel.Task, peerRequested bool, flags int, blocking bool) (kdefs.FD, interface{}, uint32, *syserr.Error) {
	// Issue the accept request to get the new endpoint.
	ep, wq, err := s.Endpoint.Accept()
	if err != nil {
		if err != tcpip.ErrWouldBlock || !blocking {
			return 0, nil, 0, syserr.TranslateNetstackError(err)
		}

		var err *syserr.Error
		ep, wq, err = s.blockingAccept(t)
		if err != nil {
			return 0, nil, 0, err
		}
	}

	ns := New(t, s.family, s.skType, wq, ep)
	defer ns.DecRef()

	if flags&linux.SOCK_NONBLOCK != 0 {
		flags := ns.Flags()
		flags.NonBlocking = true
		ns.SetFlags(flags.Settable())
	}

	var addr interface{}
	var addrLen uint32
	if peerRequested {
		// Get address of the peer and write it to peer slice.
		var err *syserr.Error
		addr, addrLen, err = ns.FileOperations.(*SocketOperations).GetPeerName(t)
		if err != nil {
			return 0, nil, 0, err
		}
	}

	fdFlags := kernel.FDFlags{
		CloseOnExec: flags&linux.SOCK_CLOEXEC != 0,
	}
	fd, e := t.FDMap().NewFDFrom(0, ns, fdFlags, t.ThreadGroup().Limits())

	return fd, addr, addrLen, syserr.FromError(e)
}

// ConvertShutdown converts Linux shutdown flags into tcpip shutdown flags.
func ConvertShutdown(how int) (tcpip.ShutdownFlags, *syserr.Error) {
	var f tcpip.ShutdownFlags
	switch how {
	case linux.SHUT_RD:
		f = tcpip.ShutdownRead
	case linux.SHUT_WR:
		f = tcpip.ShutdownWrite
	case linux.SHUT_RDWR:
		f = tcpip.ShutdownRead | tcpip.ShutdownWrite
	default:
		return 0, syserr.ErrInvalidArgument
	}
	return f, nil
}

// Shutdown implements the linux syscall shutdown(2) for sockets backed by
// tcpip.Endpoint.
func (s *SocketOperations) Shutdown(t *kernel.Task, how int) *syserr.Error {
	f, err := ConvertShutdown(how)
	if err != nil {
		return err
	}

	// Issue shutdown request.
	return syserr.TranslateNetstackError(s.Endpoint.Shutdown(f))
}

// GetSockOpt implements the linux syscall getsockopt(2) for sockets backed by
// tcpip.Endpoint.
func (s *SocketOperations) GetSockOpt(t *kernel.Task, level, name, outLen int) (interface{}, *syserr.Error) {
	return GetSockOpt(t, s, s.Endpoint, s.family, s.skType, level, name, outLen)
}

// GetSockOpt can be used to implement the linux syscall getsockopt(2) for
// sockets backed by a commonEndpoint.
func GetSockOpt(t *kernel.Task, s socket.Socket, ep commonEndpoint, family int, skType transport.SockType, level, name, outLen int) (interface{}, *syserr.Error) {
	switch level {
	case linux.SOL_SOCKET:
		switch name {
		case linux.SO_TYPE:
			if outLen < sizeOfInt32 {
				return nil, syserr.ErrInvalidArgument
			}
			return int32(skType), nil

		case linux.SO_ERROR:
			if outLen < sizeOfInt32 {
				return nil, syserr.ErrInvalidArgument
			}

			// Get the last error and convert it.
			err := ep.GetSockOpt(tcpip.ErrorOption{})
			if err == nil {
				return int32(0), nil
			}
			return int32(syserr.TranslateNetstackError(err).ToLinux().Number()), nil

		case linux.SO_PEERCRED:
			if family != linux.AF_UNIX || outLen < syscall.SizeofUcred {
				return nil, syserr.ErrInvalidArgument
			}

			tcred := t.Credentials()
			return syscall.Ucred{
				Pid: int32(t.ThreadGroup().ID()),
				Uid: uint32(tcred.EffectiveKUID.In(tcred.UserNamespace).OrOverflow()),
				Gid: uint32(tcred.EffectiveKGID.In(tcred.UserNamespace).OrOverflow()),
			}, nil

		case linux.SO_PASSCRED:
			if outLen < sizeOfInt32 {
				return nil, syserr.ErrInvalidArgument
			}

			var v tcpip.PasscredOption
			if err := ep.GetSockOpt(&v); err != nil {
				return nil, syserr.TranslateNetstackError(err)
			}

			return int32(v), nil

		case linux.SO_SNDBUF:
			if outLen < sizeOfInt32 {
				return nil, syserr.ErrInvalidArgument
			}

			var size tcpip.SendBufferSizeOption
			if err := ep.GetSockOpt(&size); err != nil {
				return nil, syserr.TranslateNetstackError(err)
			}

			if size > math.MaxInt32 {
				size = math.MaxInt32
			}

			return int32(size), nil

		case linux.SO_RCVBUF:
			if outLen < sizeOfInt32 {
				return nil, syserr.ErrInvalidArgument
			}

			var size tcpip.ReceiveBufferSizeOption
			if err := ep.GetSockOpt(&size); err != nil {
				return nil, syserr.TranslateNetstackError(err)
			}

			if size > math.MaxInt32 {
				size = math.MaxInt32
			}

			return int32(size), nil

		case linux.SO_REUSEADDR:
			if outLen < sizeOfInt32 {
				return nil, syserr.ErrInvalidArgument
			}

			var v tcpip.ReuseAddressOption
			if err := ep.GetSockOpt(&v); err != nil {
				return nil, syserr.TranslateNetstackError(err)
			}

			return int32(v), nil

		case linux.SO_KEEPALIVE:
			if outLen < sizeOfInt32 {
				return nil, syserr.ErrInvalidArgument
			}
			return int32(0), nil

		case linux.SO_LINGER:
			if outLen < syscall.SizeofLinger {
				return nil, syserr.ErrInvalidArgument
			}
			return syscall.Linger{}, nil

		case linux.SO_RCVTIMEO:
			if outLen < linux.SizeOfTimeval {
				return nil, syserr.ErrInvalidArgument
			}

			return linux.NsecToTimeval(s.RecvTimeout()), nil

		case linux.SO_TIMESTAMP:
			if outLen < sizeOfInt32 {
				return nil, syserr.ErrInvalidArgument
			}

			var v tcpip.TimestampOption
			if err := ep.GetSockOpt(&v); err != nil {
				return nil, syserr.TranslateNetstackError(err)
			}

			return int32(v), nil
		}

	case syscall.SOL_TCP:
		switch name {
		case syscall.TCP_NODELAY:
			if outLen < sizeOfInt32 {
				return nil, syserr.ErrInvalidArgument
			}

			var v tcpip.NoDelayOption
			if err := ep.GetSockOpt(&v); err != nil {
				return nil, syserr.TranslateNetstackError(err)
			}

			return int32(v), nil

		case syscall.TCP_INFO:
			var v tcpip.TCPInfoOption
			if err := ep.GetSockOpt(&v); err != nil {
				return nil, syserr.TranslateNetstackError(err)
			}

			// TODO: Translate fields once they are added to
			// tcpip.TCPInfoOption.
			info := linux.TCPInfo{}

			// Linux truncates the output binary to outLen.
			ib := binary.Marshal(nil, usermem.ByteOrder, &info)
			if len(ib) > outLen {
				ib = ib[:outLen]
			}

			return ib, nil
		}

	case syscall.SOL_IPV6:
		switch name {
		case syscall.IPV6_V6ONLY:
			if outLen < sizeOfInt32 {
				return nil, syserr.ErrInvalidArgument
			}

			var v tcpip.V6OnlyOption
			if err := ep.GetSockOpt(&v); err != nil {
				return nil, syserr.TranslateNetstackError(err)
			}

			return int32(v), nil
		}
	}

	return nil, syserr.ErrProtocolNotAvailable
}

// SetSockOpt implements the linux syscall setsockopt(2) for sockets backed by
// tcpip.Endpoint.
func (s *SocketOperations) SetSockOpt(t *kernel.Task, level int, name int, optVal []byte) *syserr.Error {
	return SetSockOpt(t, s, s.Endpoint, level, name, optVal)
}

// SetSockOpt can be used to implement the linux syscall setsockopt(2) for
// sockets backed by a commonEndpoint.
func SetSockOpt(t *kernel.Task, s socket.Socket, ep commonEndpoint, level int, name int, optVal []byte) *syserr.Error {
	switch level {
	case linux.SOL_SOCKET:
		switch name {
		case linux.SO_SNDBUF:
			if len(optVal) < sizeOfInt32 {
				return syserr.ErrInvalidArgument
			}

			v := usermem.ByteOrder.Uint32(optVal)
			return syserr.TranslateNetstackError(ep.SetSockOpt(tcpip.SendBufferSizeOption(v)))

		case linux.SO_RCVBUF:
			if len(optVal) < sizeOfInt32 {
				return syserr.ErrInvalidArgument
			}

			v := usermem.ByteOrder.Uint32(optVal)
			return syserr.TranslateNetstackError(ep.SetSockOpt(tcpip.ReceiveBufferSizeOption(v)))

		case linux.SO_REUSEADDR:
			if len(optVal) < sizeOfInt32 {
				return syserr.ErrInvalidArgument
			}

			v := usermem.ByteOrder.Uint32(optVal)
			return syserr.TranslateNetstackError(ep.SetSockOpt(tcpip.ReuseAddressOption(v)))

		case linux.SO_PASSCRED:
			if len(optVal) < sizeOfInt32 {
				return syserr.ErrInvalidArgument
			}

			v := usermem.ByteOrder.Uint32(optVal)
			return syserr.TranslateNetstackError(ep.SetSockOpt(tcpip.PasscredOption(v)))

		case linux.SO_RCVTIMEO:
			if len(optVal) < linux.SizeOfTimeval {
				return syserr.ErrInvalidArgument
			}

			var v linux.Timeval
			binary.Unmarshal(optVal[:linux.SizeOfTimeval], usermem.ByteOrder, &v)
			s.SetRecvTimeout(v.ToNsecCapped())
			return nil

		case linux.SO_TIMESTAMP:
			if len(optVal) < sizeOfInt32 {
				return syserr.ErrInvalidArgument
			}

			v := usermem.ByteOrder.Uint32(optVal)
			return syserr.TranslateNetstackError(ep.SetSockOpt(tcpip.TimestampOption(v)))
		}

	case syscall.SOL_TCP:
		switch name {
		case syscall.TCP_NODELAY:
			if len(optVal) < sizeOfInt32 {
				return syserr.ErrInvalidArgument
			}

			v := usermem.ByteOrder.Uint32(optVal)
			return syserr.TranslateNetstackError(ep.SetSockOpt(tcpip.NoDelayOption(v)))
		}
	case syscall.SOL_IPV6:
		switch name {
		case syscall.IPV6_V6ONLY:
			if len(optVal) < sizeOfInt32 {
				return syserr.ErrInvalidArgument
			}

			v := usermem.ByteOrder.Uint32(optVal)
			return syserr.TranslateNetstackError(ep.SetSockOpt(tcpip.V6OnlyOption(v)))
		}
	case syscall.SOL_IP:
		const (
			_IP_MULTICAST_IF   = 32
			_IP_ADD_MEMBERSHIP = 35
			_MCAST_JOIN_GROUP  = 42
		)
		switch name {
		case _IP_ADD_MEMBERSHIP, _MCAST_JOIN_GROUP, _IP_MULTICAST_IF:
			// FIXME: Disallow IP-level multicast group options by
			// default. These will need to be supported by appropriately plumbing
			// the level through to the network stack (if at all). However, we
			// still allow setting TTL, and multicast-enable/disable type options.
			return syserr.ErrInvalidArgument
		}
	}

	// Default to the old behavior; hand off to network stack.
	return syserr.TranslateNetstackError(ep.SetSockOpt(struct{}{}))
}

// isLinkLocal determines if the given IPv6 address is link-local. This is the
// case when it has the fe80::/10 prefix. This check is used to determine when
// the NICID is relevant for a given IPv6 address.
func isLinkLocal(addr tcpip.Address) bool {
	return len(addr) >= 2 && addr[0] == 0xfe && addr[1]&0xc0 == 0x80
}

// ConvertAddress converts the given address to a native format.
func ConvertAddress(family int, addr tcpip.FullAddress) (interface{}, uint32) {
	switch family {
	case linux.AF_UNIX:
		var out linux.SockAddrUnix
		out.Family = linux.AF_UNIX
		l := len([]byte(addr.Addr))
		for i := 0; i < l; i++ {
			out.Path[i] = int8(addr.Addr[i])
		}

		// Linux returns the used length of the address struct (including the
		// null terminator) for filesystem paths. The Family field is 2 bytes.
		// It is sometimes allowed to exclude the null terminator if the
		// address length is the max. Abstract and empty paths always return
		// the full exact length.
		if l == 0 || out.Path[0] == 0 || l == len(out.Path) {
			return out, uint32(2 + l)
		}
		return out, uint32(3 + l)
	case linux.AF_INET:
		var out linux.SockAddrInet
		copy(out.Addr[:], addr.Addr)
		out.Family = linux.AF_INET
		out.Port = htons(addr.Port)
		return out, uint32(binary.Size(out))
	case linux.AF_INET6:
		var out linux.SockAddrInet6
		if len(addr.Addr) == 4 {
			// Copy address is v4-mapped format.
			copy(out.Addr[12:], addr.Addr)
			out.Addr[10] = 0xff
			out.Addr[11] = 0xff
		} else {
			copy(out.Addr[:], addr.Addr)
		}
		out.Family = linux.AF_INET6
		out.Port = htons(addr.Port)
		if isLinkLocal(addr.Addr) {
			out.Scope_id = uint32(addr.NIC)
		}
		return out, uint32(binary.Size(out))
	default:
		return nil, 0
	}
}

// GetSockName implements the linux syscall getsockname(2) for sockets backed by
// tcpip.Endpoint.
func (s *SocketOperations) GetSockName(t *kernel.Task) (interface{}, uint32, *syserr.Error) {
	addr, err := s.Endpoint.GetLocalAddress()
	if err != nil {
		return nil, 0, syserr.TranslateNetstackError(err)
	}

	a, l := ConvertAddress(s.family, addr)
	return a, l, nil
}

// GetPeerName implements the linux syscall getpeername(2) for sockets backed by
// tcpip.Endpoint.
func (s *SocketOperations) GetPeerName(t *kernel.Task) (interface{}, uint32, *syserr.Error) {
	addr, err := s.Endpoint.GetRemoteAddress()
	if err != nil {
		return nil, 0, syserr.TranslateNetstackError(err)
	}

	a, l := ConvertAddress(s.family, addr)
	return a, l, nil
}

// coalescingRead is the fast path for non-blocking, non-peek, stream-based
// case. It coalesces as many packets as possible before returning to the
// caller.
func (s *SocketOperations) coalescingRead(ctx context.Context, dst usermem.IOSequence, discard bool) (int, *syserr.Error) {
	var err *syserr.Error
	var copied int

	// Copy as many views as possible into the user-provided buffer.
	for dst.NumBytes() != 0 {
		err = s.fetchReadView()
		if err != nil {
			break
		}

		var n int
		var e error
		if discard {
			n = len(s.readView)
			if int64(n) > dst.NumBytes() {
				n = int(dst.NumBytes())
			}
		} else {
			n, e = dst.CopyOut(ctx, s.readView)
		}
		copied += n
		s.readView.TrimFront(n)
		dst = dst.DropFirst(n)
		if e != nil {
			err = syserr.FromError(e)
			break
		}
	}

	// If we managed to copy something, we must deliver it.
	if copied > 0 {
		return copied, nil
	}

	return 0, err
}

// nonBlockingRead issues a non-blocking read.
//
// TODO: Support timestamps for stream sockets.
func (s *SocketOperations) nonBlockingRead(ctx context.Context, dst usermem.IOSequence, peek, trunc, senderRequested bool) (int, interface{}, uint32, socket.ControlMessages, *syserr.Error) {
	isPacket := s.isPacketBased()

	// Fast path for regular reads from stream (e.g., TCP) endpoints. Note
	// that senderRequested is ignored for stream sockets.
	if !peek && !isPacket {
		// TCP sockets discard the data if MSG_TRUNC is set.
		//
		// This behavior is documented in man 7 tcp:
		// Since version 2.4, Linux supports the use of MSG_TRUNC in the flags
		// argument of recv(2) (and recvmsg(2)). This flag causes the received
		// bytes of data to be discarded, rather than passed back in a
		// caller-supplied  buffer.
		s.readMu.Lock()
		n, err := s.coalescingRead(ctx, dst, trunc)
		s.readMu.Unlock()
		return n, nil, 0, socket.ControlMessages{}, err
	}

	s.readMu.Lock()
	defer s.readMu.Unlock()

	if err := s.fetchReadView(); err != nil {
		return 0, nil, 0, socket.ControlMessages{}, err
	}

	if !isPacket && peek && trunc {
		// MSG_TRUNC with MSG_PEEK on a TCP socket returns the
		// amount that could be read.
		var rql tcpip.ReceiveQueueSizeOption
		if err := s.Endpoint.GetSockOpt(&rql); err != nil {
			return 0, nil, 0, socket.ControlMessages{}, syserr.TranslateNetstackError(err)
		}
		available := len(s.readView) + int(rql)
		bufLen := int(dst.NumBytes())
		if available < bufLen {
			return available, nil, 0, socket.ControlMessages{}, nil
		}
		return bufLen, nil, 0, socket.ControlMessages{}, nil
	}

	n, err := dst.CopyOut(ctx, s.readView)
	var addr interface{}
	var addrLen uint32
	if isPacket && senderRequested {
		addr, addrLen = ConvertAddress(s.family, s.sender)
	}

	if peek {
		if l := len(s.readView); trunc && l > n {
			// isPacket must be true.
			return l, addr, addrLen, socket.ControlMessages{IP: s.readCM}, syserr.FromError(err)
		}

		if isPacket || err != nil {
			return int(n), addr, addrLen, socket.ControlMessages{IP: s.readCM}, syserr.FromError(err)
		}

		// We need to peek beyond the first message.
		dst = dst.DropFirst(n)
		num, err := dst.CopyOutFrom(ctx, safemem.FromVecReaderFunc{func(dsts [][]byte) (int64, error) {
			n, _, err := s.Endpoint.Peek(dsts)
			// TODO: Handle peek timestamp.
			if err != nil {
				return int64(n), syserr.TranslateNetstackError(err).ToError()
			}
			return int64(n), nil
		}})
		n += int(num)
		if err == syserror.ErrWouldBlock && n > 0 {
			// We got some data, so no need to return an error.
			err = nil
		}
		return int(n), nil, 0, socket.ControlMessages{IP: s.readCM}, syserr.FromError(err)
	}

	var msgLen int
	if isPacket {
		msgLen = len(s.readView)
		s.readView = nil
	} else {
		msgLen = int(n)
		s.readView.TrimFront(int(n))
	}

	if trunc {
		return msgLen, addr, addrLen, socket.ControlMessages{IP: s.readCM}, syserr.FromError(err)
	}

	return int(n), addr, addrLen, socket.ControlMessages{IP: s.readCM}, syserr.FromError(err)
}

// RecvMsg implements the linux syscall recvmsg(2) for sockets backed by
// tcpip.Endpoint.
func (s *SocketOperations) RecvMsg(t *kernel.Task, dst usermem.IOSequence, flags int, haveDeadline bool, deadline ktime.Time, senderRequested bool, controlDataLen uint64) (n int, senderAddr interface{}, senderAddrLen uint32, controlMessages socket.ControlMessages, err *syserr.Error) {
	trunc := flags&linux.MSG_TRUNC != 0
	peek := flags&linux.MSG_PEEK != 0
	if senderRequested && !s.isPacketBased() {
		// Stream sockets ignore the sender address.
		senderRequested = false
	}
	n, senderAddr, senderAddrLen, controlMessages, err = s.nonBlockingRead(t, dst, peek, trunc, senderRequested)

	if s.isPacketBased() && err == syserr.ErrClosedForReceive && flags&linux.MSG_DONTWAIT != 0 {
		// In this situation we should return EAGAIN.
		return 0, nil, 0, socket.ControlMessages{}, syserr.ErrTryAgain
	}

	if err != syserr.ErrWouldBlock || flags&linux.MSG_DONTWAIT != 0 {
		return
	}

	// We'll have to block. Register for notifications and keep trying to
	// send all the data.
	e, ch := waiter.NewChannelEntry(nil)
	s.EventRegister(&e, waiter.EventIn)
	defer s.EventUnregister(&e)

	for {
		n, senderAddr, senderAddrLen, controlMessages, err = s.nonBlockingRead(t, dst, peek, trunc, senderRequested)
		if err != syserr.ErrWouldBlock {
			return
		}

		if err := t.BlockWithDeadline(ch, haveDeadline, deadline); err != nil {
			if err == syserror.ETIMEDOUT {
				return 0, nil, 0, socket.ControlMessages{}, syserr.ErrTryAgain
			}
			return 0, nil, 0, socket.ControlMessages{}, syserr.FromError(err)
		}
	}
}

// SendMsg implements the linux syscall sendmsg(2) for sockets backed by
// tcpip.Endpoint.
func (s *SocketOperations) SendMsg(t *kernel.Task, src usermem.IOSequence, to []byte, flags int, controlMessages socket.ControlMessages) (int, *syserr.Error) {
	// Reject Unix control messages.
	if !controlMessages.Unix.Empty() {
		return 0, syserr.ErrInvalidArgument
	}

	var addr *tcpip.FullAddress
	if len(to) > 0 {
		addrBuf, err := GetAddress(s.family, to)
		if err != nil {
			return 0, err
		}

		addr = &addrBuf
	}

	v := buffer.NewView(int(src.NumBytes()))

	// Copy all the data into the buffer.
	if _, err := src.CopyIn(t, v); err != nil {
		return 0, syserr.FromError(err)
	}

	opts := tcpip.WriteOptions{
		To:          addr,
		More:        flags&linux.MSG_MORE != 0,
		EndOfRecord: flags&linux.MSG_EOR != 0,
	}

	n, resCh, err := s.Endpoint.Write(tcpip.SlicePayload(v), opts)
	if resCh != nil {
		if err := t.Block(resCh); err != nil {
			return int(n), syserr.FromError(err)
		}
		n, _, err = s.Endpoint.Write(tcpip.SlicePayload(v), opts)
	}
	if err != tcpip.ErrWouldBlock || flags&linux.MSG_DONTWAIT != 0 {
		return int(n), syserr.TranslateNetstackError(err)
	}

	// We'll have to block. Register for notification and keep trying to
	// send all the data.
	e, ch := waiter.NewChannelEntry(nil)
	s.EventRegister(&e, waiter.EventOut)
	defer s.EventUnregister(&e)

	v.TrimFront(int(n))
	total := n
	for {
		n, _, err = s.Endpoint.Write(tcpip.SlicePayload(v), opts)
		v.TrimFront(int(n))
		total += n
		if err != tcpip.ErrWouldBlock {
			return int(total), syserr.TranslateNetstackError(err)
		}

		if err := t.Block(ch); err != nil {
			return int(total), syserr.FromError(err)
		}
	}
}

// Ioctl implements fs.FileOperations.Ioctl.
func (s *SocketOperations) Ioctl(ctx context.Context, io usermem.IO, args arch.SyscallArguments) (uintptr, error) {
	return Ioctl(ctx, s.Endpoint, io, args)
}

// Ioctl performs a socket ioctl.
func Ioctl(ctx context.Context, ep commonEndpoint, io usermem.IO, args arch.SyscallArguments) (uintptr, error) {
	switch arg := int(args[1].Int()); arg {
	case syscall.SIOCGIFFLAGS,
		syscall.SIOCGIFADDR,
		syscall.SIOCGIFBRDADDR,
		syscall.SIOCGIFDSTADDR,
		syscall.SIOCGIFHWADDR,
		syscall.SIOCGIFINDEX,
		syscall.SIOCGIFMAP,
		syscall.SIOCGIFMETRIC,
		syscall.SIOCGIFMTU,
		syscall.SIOCGIFNAME,
		syscall.SIOCGIFNETMASK,
		syscall.SIOCGIFTXQLEN:

		var ifr linux.IFReq
		if _, err := usermem.CopyObjectIn(ctx, io, args[2].Pointer(), &ifr, usermem.IOOpts{
			AddressSpaceActive: true,
		}); err != nil {
			return 0, err
		}
		if err := interfaceIoctl(ctx, io, arg, &ifr); err != nil {
			return 0, err.ToError()
		}
		_, err := usermem.CopyObjectOut(ctx, io, args[2].Pointer(), &ifr, usermem.IOOpts{
			AddressSpaceActive: true,
		})
		return 0, err

	case syscall.SIOCGIFCONF:
		// Return a list of interface addresses or the buffer size
		// necessary to hold the list.
		var ifc linux.IFConf
		if _, err := usermem.CopyObjectIn(ctx, io, args[2].Pointer(), &ifc, usermem.IOOpts{
			AddressSpaceActive: true,
		}); err != nil {
			return 0, err
		}

		if err := ifconfIoctl(ctx, io, &ifc); err != nil {
			return 0, err
		}

		_, err := usermem.CopyObjectOut(ctx, io, args[2].Pointer(), ifc, usermem.IOOpts{
			AddressSpaceActive: true,
		})

		return 0, err

	case linux.TIOCINQ:
		var v tcpip.ReceiveQueueSizeOption
		if err := ep.GetSockOpt(&v); err != nil {
			return 0, syserr.TranslateNetstackError(err).ToError()
		}

		if v > math.MaxInt32 {
			v = math.MaxInt32
		}
		// Copy result to user-space.
		_, err := usermem.CopyObjectOut(ctx, io, args[2].Pointer(), int32(v), usermem.IOOpts{
			AddressSpaceActive: true,
		})
		return 0, err

	case linux.TIOCOUTQ:
		var v tcpip.SendQueueSizeOption
		if err := ep.GetSockOpt(&v); err != nil {
			return 0, syserr.TranslateNetstackError(err).ToError()
		}

		if v > math.MaxInt32 {
			v = math.MaxInt32
		}

		// Copy result to user-space.
		_, err := usermem.CopyObjectOut(ctx, io, args[2].Pointer(), int32(v), usermem.IOOpts{
			AddressSpaceActive: true,
		})
		return 0, err

	}

	return 0, syserror.ENOTTY
}

// interfaceIoctl implements interface requests.
func interfaceIoctl(ctx context.Context, io usermem.IO, arg int, ifr *linux.IFReq) *syserr.Error {
	var (
		iface inet.Interface
		index int32
		found bool
	)

	// Find the relevant device.
	stack := inet.StackFromContext(ctx)
	if stack == nil {
		return syserr.ErrNoDevice
	}

	// SIOCGIFNAME uses ifr.ifr_ifindex rather than ifr.ifr_name to
	// identify a device.
	if arg == syscall.SIOCGIFNAME {
		// Gets the name of the interface given the interface index
		// stored in ifr_ifindex.
		index = int32(usermem.ByteOrder.Uint32(ifr.Data[:4]))
		if iface, ok := stack.Interfaces()[index]; ok {
			ifr.SetName(iface.Name)
			return nil
		}
		return syserr.ErrNoDevice
	}

	// Find the relevant device.
	for index, iface = range stack.Interfaces() {
		if iface.Name == ifr.Name() {
			found = true
			break
		}
	}
	if !found {
		return syserr.ErrNoDevice
	}

	switch arg {
	case syscall.SIOCGIFINDEX:
		// Copy out the index to the data.
		usermem.ByteOrder.PutUint32(ifr.Data[:], uint32(index))

	case syscall.SIOCGIFHWADDR:
		// Copy the hardware address out.
		ifr.Data[0] = 6 // IEEE802.2 arp type.
		ifr.Data[1] = 0
		n := copy(ifr.Data[2:], iface.Addr)
		for i := 2 + n; i < len(ifr.Data); i++ {
			ifr.Data[i] = 0 // Clear padding.
		}
		usermem.ByteOrder.PutUint16(ifr.Data[:2], uint16(n))

	case syscall.SIOCGIFFLAGS:
		f, err := interfaceStatusFlags(stack, iface.Name)
		if err != nil {
			return err
		}
		// Drop the flags that don't fit in the size that we need to return. This
		// matches Linux behavior.
		usermem.ByteOrder.PutUint16(ifr.Data[:2], uint16(f))

	case syscall.SIOCGIFADDR:
		// Copy the IPv4 address out.
		for _, addr := range stack.InterfaceAddrs()[index] {
			// This ioctl is only compatible with AF_INET addresses.
			if addr.Family != linux.AF_INET {
				continue
			}
			copy(ifr.Data[4:8], addr.Addr)
			break
		}

	case syscall.SIOCGIFMETRIC:
		// Gets the metric of the device. As per netdevice(7), this
		// always just sets ifr_metric to 0.
		usermem.ByteOrder.PutUint32(ifr.Data[:4], 0)

	case syscall.SIOCGIFMTU:
		// Gets the MTU of the device.
		usermem.ByteOrder.PutUint32(ifr.Data[:4], iface.MTU)

	case syscall.SIOCGIFMAP:
		// Gets the hardware parameters of the device.
		// TODO: Implement.

	case syscall.SIOCGIFTXQLEN:
		// Gets the transmit queue length of the device.
		// TODO: Implement.

	case syscall.SIOCGIFDSTADDR:
		// Gets the destination address of a point-to-point device.
		// TODO: Implement.

	case syscall.SIOCGIFBRDADDR:
		// Gets the broadcast address of a device.
		// TODO: Implement.

	case syscall.SIOCGIFNETMASK:
		// Gets the network mask of a device.
		for _, addr := range stack.InterfaceAddrs()[index] {
			// This ioctl is only compatible with AF_INET addresses.
			if addr.Family != linux.AF_INET {
				continue
			}
			// Populate ifr.ifr_netmask (type sockaddr).
			usermem.ByteOrder.PutUint16(ifr.Data[0:2], uint16(linux.AF_INET))
			usermem.ByteOrder.PutUint16(ifr.Data[2:4], 0)
			var mask uint32 = 0xffffffff << (32 - addr.PrefixLen)
			// Netmask is expected to be returned as a big endian
			// value.
			binary.BigEndian.PutUint32(ifr.Data[4:8], mask)
			break
		}

	default:
		// Not a valid call.
		return syserr.ErrInvalidArgument
	}

	return nil
}

// ifconfIoctl populates a struct ifconf for the SIOCGIFCONF ioctl.
func ifconfIoctl(ctx context.Context, io usermem.IO, ifc *linux.IFConf) error {
	// If Ptr is NULL, return the necessary buffer size via Len.
	// Otherwise, write up to Len bytes starting at Ptr containing ifreq
	// structs.
	stack := inet.StackFromContext(ctx)
	if stack == nil {
		return syserr.ErrNoDevice.ToError()
	}

	if ifc.Ptr == 0 {
		ifc.Len = int32(len(stack.Interfaces())) * int32(linux.SizeOfIFReq)
		return nil
	}

	max := ifc.Len
	ifc.Len = 0
	for key, ifaceAddrs := range stack.InterfaceAddrs() {
		iface := stack.Interfaces()[key]
		for _, ifaceAddr := range ifaceAddrs {
			// Don't write past the end of the buffer.
			if ifc.Len+int32(linux.SizeOfIFReq) > max {
				break
			}
			if ifaceAddr.Family != linux.AF_INET {
				continue
			}

			// Populate ifr.ifr_addr.
			ifr := linux.IFReq{}
			ifr.SetName(iface.Name)
			usermem.ByteOrder.PutUint16(ifr.Data[0:2], uint16(ifaceAddr.Family))
			usermem.ByteOrder.PutUint16(ifr.Data[2:4], 0)
			copy(ifr.Data[4:8], ifaceAddr.Addr[:4])

			// Copy the ifr to userspace.
			dst := uintptr(ifc.Ptr) + uintptr(ifc.Len)
			ifc.Len += int32(linux.SizeOfIFReq)
			if _, err := usermem.CopyObjectOut(ctx, io, usermem.Addr(dst), ifr, usermem.IOOpts{
				AddressSpaceActive: true,
			}); err != nil {
				return err
			}
		}
	}
	return nil
}

// interfaceStatusFlags returns status flags for an interface in the stack.
// Flag values and meanings are described in greater detail in netdevice(7) in
// the SIOCGIFFLAGS section.
func interfaceStatusFlags(stack inet.Stack, name string) (uint32, *syserr.Error) {
	// epsocket should only ever be passed an epsocket.Stack.
	epstack, ok := stack.(*Stack)
	if !ok {
		return 0, errStackType
	}

	// Find the NIC corresponding to this interface.
	for _, info := range epstack.Stack.NICInfo() {
		if info.Name == name {
			return nicStateFlagsToLinux(info.Flags), nil
		}
	}
	return 0, syserr.ErrNoDevice
}

func nicStateFlagsToLinux(f stack.NICStateFlags) uint32 {
	var rv uint32
	if f.Up {
		rv |= linux.IFF_UP | linux.IFF_LOWER_UP
	}
	if f.Running {
		rv |= linux.IFF_RUNNING
	}
	if f.Promiscuous {
		rv |= linux.IFF_PROMISC
	}
	if f.Loopback {
		rv |= linux.IFF_LOOPBACK
	}
	return rv
}