1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
|
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package ptrace provides a ptrace-based implementation of the platform
// interface. This is useful for development and testing purposes primarily,
// and runs on stock kernels without special permissions.
//
// In a nutshell, it works as follows:
//
// The creation of a new address space creates a new child processes with a
// single thread which is traced by a single goroutine.
//
// A context is just a collection of temporary variables. Calling Switch on a
// context does the following:
//
// Locks the runtime thread.
//
// Looks up a traced subprocess thread for the current runtime thread. If
// none exists, the dedicated goroutine is asked to create a new stopped
// thread in the subprocess. This stopped subprocess thread is then traced
// by the current thread and this information is stored for subsequent
// switches.
//
// The context is then bound with information about the subprocess thread
// so that the context may be appropriately interrupted via a signal.
//
// The requested operation is performed in the traced subprocess thread
// (e.g. set registers, execute, return).
//
// Lock order:
//
// subprocess.mu
// context.mu
package ptrace
import (
"sync"
"gvisor.googlesource.com/gvisor/pkg/abi/linux"
"gvisor.googlesource.com/gvisor/pkg/sentry/arch"
"gvisor.googlesource.com/gvisor/pkg/sentry/platform"
"gvisor.googlesource.com/gvisor/pkg/sentry/platform/filemem"
"gvisor.googlesource.com/gvisor/pkg/sentry/platform/interrupt"
"gvisor.googlesource.com/gvisor/pkg/sentry/usermem"
)
var (
// stubStart is the link address for our stub, and determines the
// maximum user address. This is valid only after a call to stubInit.
//
// We attempt to link the stub here, and adjust downward as needed.
stubStart uintptr = 0x7fffffff0000
// stubEnd is the first byte past the end of the stub, as with
// stubStart this is valid only after a call to stubInit.
stubEnd uintptr
// stubInitialized controls one-time stub initialization.
stubInitialized sync.Once
)
type context struct {
// signalInfo is the signal info, if and when a signal is received.
signalInfo arch.SignalInfo
// interrupt is the interrupt context.
interrupt interrupt.Forwarder
// mu protects the following fields.
mu sync.Mutex
// If lastFaultSP is non-nil, the last context switch was due to a fault
// received while executing lastFaultSP. Only context.Switch may set
// lastFaultSP to a non-nil value.
lastFaultSP *subprocess
// lastFaultAddr is the last faulting address; this is only meaningful if
// lastFaultSP is non-nil.
lastFaultAddr usermem.Addr
// lastFaultIP is the address of the last faulting instruction;
// this is also only meaningful if lastFaultSP is non-nil.
lastFaultIP usermem.Addr
}
// Switch runs the provided context in the given address space.
func (c *context) Switch(as platform.AddressSpace, ac arch.Context, cpu int32) (*arch.SignalInfo, usermem.AccessType, error) {
s := as.(*subprocess)
isSyscall := s.switchToApp(c, ac)
var (
faultSP *subprocess
faultAddr usermem.Addr
faultIP usermem.Addr
)
if !isSyscall && linux.Signal(c.signalInfo.Signo) == linux.SIGSEGV {
faultSP = s
faultAddr = usermem.Addr(c.signalInfo.Addr())
faultIP = usermem.Addr(ac.IP())
}
// Update the context to reflect the outcome of this context switch.
c.mu.Lock()
lastFaultSP := c.lastFaultSP
lastFaultAddr := c.lastFaultAddr
lastFaultIP := c.lastFaultIP
// At this point, c may not yet be in s.contexts, so c.lastFaultSP won't be
// updated by s.Unmap(). This is fine; we only need to synchronize with
// calls to s.Unmap() that occur after the handling of this fault.
c.lastFaultSP = faultSP
c.lastFaultAddr = faultAddr
c.lastFaultIP = faultIP
c.mu.Unlock()
// Update subprocesses to reflect the outcome of this context switch.
if lastFaultSP != faultSP {
if lastFaultSP != nil {
lastFaultSP.mu.Lock()
delete(lastFaultSP.contexts, c)
lastFaultSP.mu.Unlock()
}
if faultSP != nil {
faultSP.mu.Lock()
faultSP.contexts[c] = struct{}{}
faultSP.mu.Unlock()
}
}
if isSyscall {
return nil, usermem.NoAccess, nil
}
si := c.signalInfo
if faultSP == nil {
// Non-fault signal.
return &si, usermem.NoAccess, platform.ErrContextSignal
}
// Got a page fault. Ideally, we'd get real fault type here, but ptrace
// doesn't expose this information. Instead, we use a simple heuristic:
//
// It was an instruction fault iff the faulting addr == instruction
// pointer.
//
// It was a write fault if the fault is immediately repeated.
at := usermem.Read
if faultAddr == faultIP {
at.Execute = true
}
if lastFaultSP == faultSP &&
lastFaultAddr == faultAddr &&
lastFaultIP == faultIP {
at.Write = true
}
// Unfortunately, we have to unilaterally return ErrContextSignalCPUID
// here, in case this fault was generated by a CPUID exception. There
// is no way to distinguish between CPUID-generated faults and regular
// page faults.
return &si, at, platform.ErrContextSignalCPUID
}
// Interrupt interrupts the running guest application associated with this context.
func (c *context) Interrupt() {
c.interrupt.NotifyInterrupt()
}
// PTrace represents a collection of ptrace subprocesses.
type PTrace struct {
platform.MMapMinAddr
platform.NoCPUPreemptionDetection
*filemem.FileMem
}
// New returns a new ptrace-based implementation of the platform interface.
func New() (*PTrace, error) {
stubInitialized.Do(func() {
// Initialize the stub.
stubInit()
// Create the master process for the global pool. This must be
// done before initializing any other processes.
master, err := newSubprocess(createStub)
if err != nil {
// Should never happen.
panic("unable to initialize ptrace master: " + err.Error())
}
// Set the master on the globalPool.
globalPool.master = master
})
fm, err := filemem.New("ptrace-memory")
if err != nil {
return nil, err
}
return &PTrace{FileMem: fm}, nil
}
// SupportsAddressSpaceIO implements platform.Platform.SupportsAddressSpaceIO.
func (*PTrace) SupportsAddressSpaceIO() bool {
return false
}
// CooperativelySchedulesAddressSpace implements platform.Platform.CooperativelySchedulesAddressSpace.
func (*PTrace) CooperativelySchedulesAddressSpace() bool {
return false
}
// MapUnit implements platform.Platform.MapUnit.
func (*PTrace) MapUnit() uint64 {
// The host kernel manages page tables and arbitrary-sized mappings
// have effectively the same cost.
return 0
}
// MaxUserAddress returns the first address that may not be used by user
// applications.
func (*PTrace) MaxUserAddress() usermem.Addr {
return usermem.Addr(stubStart)
}
// NewAddressSpace returns a new subprocess.
func (p *PTrace) NewAddressSpace(_ interface{}) (platform.AddressSpace, <-chan struct{}, error) {
as, err := newSubprocess(globalPool.master.createStub)
return as, nil, err
}
// NewContext returns an interruptible context.
func (*PTrace) NewContext() platform.Context {
return &context{}
}
// Memory returns the platform memory used to do allocations.
func (p *PTrace) Memory() platform.Memory {
return p.FileMem
}
|