summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/platform/kvm/machine_amd64.go
blob: 6afae5caee90eb8d9f6da3d0536d6f9c5aaea50f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
// Copyright 2018 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// +build amd64

package kvm

import (
	"fmt"
	"reflect"
	"syscall"

	"gvisor.googlesource.com/gvisor/pkg/sentry/arch"
	"gvisor.googlesource.com/gvisor/pkg/sentry/platform"
	"gvisor.googlesource.com/gvisor/pkg/sentry/platform/ring0"
	"gvisor.googlesource.com/gvisor/pkg/sentry/platform/ring0/pagetables"
	"gvisor.googlesource.com/gvisor/pkg/sentry/usermem"
)

// initArchState initializes architecture-specific state.
func (m *machine) initArchState(vCPUs int) error {
	// Set the legacy TSS address. This address is covered by the reserved
	// range (up to 4GB). In fact, this is a main reason it exists.
	if _, _, errno := syscall.RawSyscall(
		syscall.SYS_IOCTL,
		uintptr(m.fd),
		_KVM_SET_TSS_ADDR,
		uintptr(reservedMemory-(3*usermem.PageSize))); errno != 0 {
		return errno
	}
	return nil
}

type vCPUArchState struct {
	// PCIDs is the set of PCIDs for this vCPU.
	//
	// This starts above fixedKernelPCID.
	PCIDs *pagetables.PCIDs
}

const (
	// fixedKernelPCID is a fixed kernel PCID used for the kernel page
	// tables. We must start allocating user PCIDs above this in order to
	// avoid any conflict (see below).
	fixedKernelPCID = 1

	// poolPCIDs is the number of PCIDs to record in the database. As this
	// grows, assignment can take longer, since it is a simple linear scan.
	// Beyond a relatively small number, there are likely few perform
	// benefits, since the TLB has likely long since lost any translations
	// from more than a few PCIDs past.
	poolPCIDs = 8
)

// dropPageTables drops cached page table entries.
func (m *machine) dropPageTables(pt *pagetables.PageTables) {
	m.mu.Lock()
	defer m.mu.Unlock()

	// Clear from all PCIDs.
	for _, c := range m.vCPUs {
		c.PCIDs.Drop(pt)
	}
}

// initArchState initializes architecture-specific state.
func (c *vCPU) initArchState() error {
	var (
		kernelSystemRegs systemRegs
		kernelUserRegs   userRegs
	)

	// Set base control registers.
	kernelSystemRegs.CR0 = c.CR0()
	kernelSystemRegs.CR4 = c.CR4()
	kernelSystemRegs.EFER = c.EFER()

	// Set the IDT & GDT in the registers.
	kernelSystemRegs.IDT.base, kernelSystemRegs.IDT.limit = c.IDT()
	kernelSystemRegs.GDT.base, kernelSystemRegs.GDT.limit = c.GDT()
	kernelSystemRegs.CS.Load(&ring0.KernelCodeSegment, ring0.Kcode)
	kernelSystemRegs.DS.Load(&ring0.UserDataSegment, ring0.Udata)
	kernelSystemRegs.ES.Load(&ring0.UserDataSegment, ring0.Udata)
	kernelSystemRegs.SS.Load(&ring0.KernelDataSegment, ring0.Kdata)
	kernelSystemRegs.FS.Load(&ring0.UserDataSegment, ring0.Udata)
	kernelSystemRegs.GS.Load(&ring0.UserDataSegment, ring0.Udata)
	tssBase, tssLimit, tss := c.TSS()
	kernelSystemRegs.TR.Load(tss, ring0.Tss)
	kernelSystemRegs.TR.base = tssBase
	kernelSystemRegs.TR.limit = uint32(tssLimit)

	// Point to kernel page tables, with no initial PCID.
	kernelSystemRegs.CR3 = c.machine.kernel.PageTables.CR3(false, 0)

	// Initialize the PCID database.
	if hasGuestPCID {
		// Note that NewPCIDs may return a nil table here, in which
		// case we simply don't use PCID support (see below). In
		// practice, this should not happen, however.
		c.PCIDs = pagetables.NewPCIDs(fixedKernelPCID+1, poolPCIDs)
	}

	// Set the CPUID; this is required before setting system registers,
	// since KVM will reject several CR4 bits if the CPUID does not
	// indicate the support is available.
	if err := c.setCPUID(); err != nil {
		return err
	}

	// Set the entrypoint for the kernel.
	kernelUserRegs.RIP = uint64(reflect.ValueOf(ring0.Start).Pointer())
	kernelUserRegs.RAX = uint64(reflect.ValueOf(&c.CPU).Pointer())
	kernelUserRegs.RFLAGS = ring0.KernelFlagsSet

	// Set the system registers.
	if err := c.setSystemRegisters(&kernelSystemRegs); err != nil {
		return err
	}

	// Set the user registers.
	if err := c.setUserRegisters(&kernelUserRegs); err != nil {
		return err
	}

	// Set the time offset to the host native time.
	return c.setSystemTime()
}

// fault generates an appropriate fault return.
//
//go:nosplit
func (c *vCPU) fault(signal int32) (*arch.SignalInfo, usermem.AccessType, error) {
	bluepill(c) // Probably no-op, but may not be.
	faultAddr := ring0.ReadCR2()
	code, user := c.ErrorCode()
	if !user {
		// The last fault serviced by this CPU was not a user
		// fault, so we can't reliably trust the faultAddr or
		// the code provided here. We need to re-execute.
		return nil, usermem.NoAccess, platform.ErrContextInterrupt
	}
	info := &arch.SignalInfo{Signo: signal}
	info.SetAddr(uint64(faultAddr))
	accessType := usermem.AccessType{
		Read:    code&(1<<1) == 0,
		Write:   code&(1<<1) != 0,
		Execute: code&(1<<4) != 0,
	}
	return info, accessType, platform.ErrContextSignal
}

// SwitchToUser unpacks architectural-details.
func (c *vCPU) SwitchToUser(switchOpts ring0.SwitchOpts) (*arch.SignalInfo, usermem.AccessType, error) {
	// Assign PCIDs.
	if c.PCIDs != nil {
		var requireFlushPCID bool // Force a flush?
		switchOpts.UserPCID, requireFlushPCID = c.PCIDs.Assign(switchOpts.PageTables)
		switchOpts.KernelPCID = fixedKernelPCID
		switchOpts.Flush = switchOpts.Flush || requireFlushPCID
	}

	// See below.
	var vector ring0.Vector

	// Past this point, stack growth can cause system calls (and a break
	// from guest mode). So we need to ensure that between the bluepill
	// call here and the switch call immediately below, no additional
	// allocations occur.
	entersyscall()
	bluepill(c)
	vector = c.CPU.SwitchToUser(switchOpts)
	exitsyscall()

	switch vector {
	case ring0.Syscall, ring0.SyscallInt80:
		// Fast path: system call executed.
		return nil, usermem.NoAccess, nil

	case ring0.PageFault:
		return c.fault(int32(syscall.SIGSEGV))

	case ring0.Debug, ring0.Breakpoint:
		info := &arch.SignalInfo{Signo: int32(syscall.SIGTRAP)}
		return info, usermem.AccessType{}, platform.ErrContextSignal

	case ring0.GeneralProtectionFault:
		if !ring0.IsCanonical(switchOpts.Registers.Rip) {
			// If the RIP is non-canonical, it's a SEGV.
			info := &arch.SignalInfo{Signo: int32(syscall.SIGSEGV)}
			return info, usermem.AccessType{}, platform.ErrContextSignal
		}
		// Otherwise, we deliver a SIGBUS.
		info := &arch.SignalInfo{Signo: int32(syscall.SIGBUS)}
		return info, usermem.AccessType{}, platform.ErrContextSignal

	case ring0.InvalidOpcode:
		info := &arch.SignalInfo{Signo: int32(syscall.SIGILL)}
		return info, usermem.AccessType{}, platform.ErrContextSignal

	case ring0.X87FloatingPointException:
		info := &arch.SignalInfo{Signo: int32(syscall.SIGFPE)}
		return info, usermem.AccessType{}, platform.ErrContextSignal

	case ring0.Vector(bounce):
		return nil, usermem.NoAccess, platform.ErrContextInterrupt

	case ring0.NMI:
		// An NMI is generated only when a fault is not servicable by
		// KVM itself, so we think some mapping is writeable but it's
		// really not. This could happen, e.g. if some file is
		// truncated (and would generate a SIGBUS) and we map it
		// directly into the instance.
		return c.fault(int32(syscall.SIGBUS))

	default:
		panic(fmt.Sprintf("unexpected vector: 0x%x", vector))
	}
}