1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kvm
import (
"fmt"
"runtime"
"sync/atomic"
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/atomicbitops"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/procid"
"gvisor.dev/gvisor/pkg/ring0"
"gvisor.dev/gvisor/pkg/ring0/pagetables"
ktime "gvisor.dev/gvisor/pkg/sentry/time"
"gvisor.dev/gvisor/pkg/sync"
)
// machine contains state associated with the VM as a whole.
type machine struct {
// fd is the vm fd.
fd int
// nextSlot is the next slot for setMemoryRegion.
//
// This must be accessed atomically. If nextSlot is ^uint32(0), then
// slots are currently being updated, and the caller should retry.
nextSlot uint32
// upperSharedPageTables tracks the read-only shared upper of all the pagetables.
upperSharedPageTables *pagetables.PageTables
// kernel is the set of global structures.
kernel ring0.Kernel
// mu protects vCPUs.
mu sync.RWMutex
// available is notified when vCPUs are available.
available sync.Cond
// vCPUsByTID are the machine vCPUs.
//
// These are populated dynamically.
vCPUsByTID map[uint64]*vCPU
// vCPUsByID are the machine vCPUs, can be indexed by the vCPU's ID.
vCPUsByID []*vCPU
// maxVCPUs is the maximum number of vCPUs supported by the machine.
maxVCPUs int
// maxSlots is the maximum number of memory slots supported by the machine.
maxSlots int
// tscControl checks whether cpu supports TSC scaling
tscControl bool
// usedSlots is the set of used physical addresses (not sorted).
usedSlots []uintptr
// nextID is the next vCPU ID.
nextID uint32
// machineArchState is the architecture-specific state.
machineArchState
}
const (
// vCPUReady is an alias for all the below clear.
vCPUReady uint32 = 0
// vCPUser indicates that the vCPU is in or about to enter user mode.
vCPUUser uint32 = 1 << 0
// vCPUGuest indicates the vCPU is in guest mode.
vCPUGuest uint32 = 1 << 1
// vCPUWaiter indicates that there is a waiter.
//
// If this is set, then notify must be called on any state transitions.
vCPUWaiter uint32 = 1 << 2
)
// vCPU is a single KVM vCPU.
type vCPU struct {
// CPU is the kernel CPU data.
//
// This must be the first element of this structure, it is referenced
// by the bluepill code (see bluepill_amd64.s).
ring0.CPU
// id is the vCPU id.
id int
// fd is the vCPU fd.
fd int
// tid is the last set tid.
tid uint64
// userExits is the count of user exits.
userExits uint64
// guestExits is the count of guest to host world switches.
guestExits uint64
// faults is a count of world faults (informational only).
faults uint32
// state is the vCPU state.
//
// This is a bitmask of the three fields (vCPU*) described above.
state uint32
// runData for this vCPU.
runData *runData
// machine associated with this vCPU.
machine *machine
// active is the current addressSpace: this is set and read atomically,
// it is used to elide unnecessary interrupts due to invalidations.
active atomicAddressSpace
// vCPUArchState is the architecture-specific state.
vCPUArchState
// dieState holds state related to vCPU death.
dieState dieState
}
type dieState struct {
// message is thrown from die.
message string
// guestRegs is used to store register state during vCPU.die() to prevent
// allocation inside nosplit function.
guestRegs userRegs
}
// newVCPU creates a returns a new vCPU.
//
// Precondition: mu must be held.
func (m *machine) newVCPU() *vCPU {
// Create the vCPU.
id := int(atomic.AddUint32(&m.nextID, 1) - 1)
fd, _, errno := unix.RawSyscall(unix.SYS_IOCTL, uintptr(m.fd), _KVM_CREATE_VCPU, uintptr(id))
if errno != 0 {
panic(fmt.Sprintf("error creating new vCPU: %v", errno))
}
c := &vCPU{
id: id,
fd: int(fd),
machine: m,
}
c.CPU.Init(&m.kernel, c.id, c)
m.vCPUsByID[c.id] = c
// Ensure the signal mask is correct.
if err := c.setSignalMask(); err != nil {
panic(fmt.Sprintf("error setting signal mask: %v", err))
}
// Map the run data.
runData, err := mapRunData(int(fd))
if err != nil {
panic(fmt.Sprintf("error mapping run data: %v", err))
}
c.runData = runData
// Initialize architecture state.
if err := c.initArchState(); err != nil {
panic(fmt.Sprintf("error initialization vCPU state: %v", err))
}
return c // Done.
}
// newMachine returns a new VM context.
func newMachine(vm int) (*machine, error) {
// Create the machine.
m := &machine{fd: vm}
m.available.L = &m.mu
// Pull the maximum vCPUs.
m.getMaxVCPU()
log.Debugf("The maximum number of vCPUs is %d.", m.maxVCPUs)
m.vCPUsByTID = make(map[uint64]*vCPU)
m.vCPUsByID = make([]*vCPU, m.maxVCPUs)
m.kernel.Init(m.maxVCPUs)
// Pull the maximum slots.
maxSlots, _, errno := unix.RawSyscall(unix.SYS_IOCTL, uintptr(m.fd), _KVM_CHECK_EXTENSION, _KVM_CAP_MAX_MEMSLOTS)
if errno != 0 {
m.maxSlots = _KVM_NR_MEMSLOTS
} else {
m.maxSlots = int(maxSlots)
}
log.Debugf("The maximum number of slots is %d.", m.maxSlots)
m.usedSlots = make([]uintptr, m.maxSlots)
// Check TSC Scaling
hasTSCControl, _, errno := unix.RawSyscall(unix.SYS_IOCTL, uintptr(m.fd), _KVM_CHECK_EXTENSION, _KVM_CAP_TSC_CONTROL)
m.tscControl = errno == 0 && hasTSCControl == 1
log.Debugf("TSC scaling support: %t.", m.tscControl)
// Create the upper shared pagetables and kernel(sentry) pagetables.
m.upperSharedPageTables = pagetables.New(newAllocator())
m.mapUpperHalf(m.upperSharedPageTables)
m.upperSharedPageTables.Allocator.(*allocator).base.Drain()
m.upperSharedPageTables.MarkReadOnlyShared()
m.kernel.PageTables = pagetables.NewWithUpper(newAllocator(), m.upperSharedPageTables, ring0.KernelStartAddress)
// Apply the physical mappings. Note that these mappings may point to
// guest physical addresses that are not actually available. These
// physical pages are mapped on demand, see kernel_unsafe.go.
applyPhysicalRegions(func(pr physicalRegion) bool {
// Map everything in the lower half.
m.kernel.PageTables.Map(
hostarch.Addr(pr.virtual),
pr.length,
pagetables.MapOpts{AccessType: hostarch.AnyAccess},
pr.physical)
return true // Keep iterating.
})
var physicalRegionsReadOnly []physicalRegion
var physicalRegionsAvailable []physicalRegion
physicalRegionsReadOnly = rdonlyRegionsForSetMem()
physicalRegionsAvailable = availableRegionsForSetMem()
// Map all read-only regions.
for _, r := range physicalRegionsReadOnly {
m.mapPhysical(r.physical, r.length, physicalRegionsReadOnly, _KVM_MEM_READONLY)
}
// Ensure that the currently mapped virtual regions are actually
// available in the VM. Note that this doesn't guarantee no future
// faults, however it should guarantee that everything is available to
// ensure successful vCPU entry.
applyVirtualRegions(func(vr virtualRegion) {
if excludeVirtualRegion(vr) {
return // skip region.
}
for _, r := range physicalRegionsReadOnly {
if vr.virtual == r.virtual {
return
}
}
for virtual := vr.virtual; virtual < vr.virtual+vr.length; {
physical, length, ok := translateToPhysical(virtual)
if !ok {
// This must be an invalid region that was
// knocked out by creation of the physical map.
return
}
if virtual+length > vr.virtual+vr.length {
// Cap the length to the end of the area.
length = vr.virtual + vr.length - virtual
}
// Ensure the physical range is mapped.
m.mapPhysical(physical, length, physicalRegionsAvailable, _KVM_MEM_FLAGS_NONE)
virtual += length
}
})
// Initialize architecture state.
if err := m.initArchState(); err != nil {
m.Destroy()
return nil, err
}
// Ensure the machine is cleaned up properly.
runtime.SetFinalizer(m, (*machine).Destroy)
return m, nil
}
// hasSlot returns true if the given address is mapped.
//
// This must be done via a linear scan.
//
//go:nosplit
func (m *machine) hasSlot(physical uintptr) bool {
slotLen := int(atomic.LoadUint32(&m.nextSlot))
// When slots are being updated, nextSlot is ^uint32(0). As this situation
// is less likely happen, we just set the slotLen to m.maxSlots, and scan
// the whole usedSlots array.
if slotLen == int(^uint32(0)) {
slotLen = m.maxSlots
}
for i := 0; i < slotLen; i++ {
if p := atomic.LoadUintptr(&m.usedSlots[i]); p == physical {
return true
}
}
return false
}
// mapPhysical checks for the mapping of a physical range, and installs one if
// not available. This attempts to be efficient for calls in the hot path.
//
// This panics on error.
//
//go:nosplit
func (m *machine) mapPhysical(physical, length uintptr, phyRegions []physicalRegion, flags uint32) {
for end := physical + length; physical < end; {
_, physicalStart, length, ok := calculateBluepillFault(physical, phyRegions)
if !ok {
// Should never happen.
panic("mapPhysical on unknown physical address")
}
// Is this already mapped? Check the usedSlots.
if !m.hasSlot(physicalStart) {
if _, ok := handleBluepillFault(m, physical, phyRegions, flags); !ok {
panic("handleBluepillFault failed")
}
}
// Move to the next chunk.
physical = physicalStart + length
}
}
// Destroy frees associated resources.
//
// Destroy should only be called once all active users of the machine are gone.
// The machine object should not be used after calling Destroy.
//
// Precondition: all vCPUs must be returned to the machine.
func (m *machine) Destroy() {
runtime.SetFinalizer(m, nil)
// Destroy vCPUs.
for _, c := range m.vCPUsByID {
if c == nil {
continue
}
// Ensure the vCPU is not still running in guest mode. This is
// possible iff teardown has been done by other threads, and
// somehow a single thread has not executed any system calls.
c.BounceToHost()
// Note that the runData may not be mapped if an error occurs
// during the middle of initialization.
if c.runData != nil {
if err := unmapRunData(c.runData); err != nil {
panic(fmt.Sprintf("error unmapping rundata: %v", err))
}
}
if err := unix.Close(int(c.fd)); err != nil {
panic(fmt.Sprintf("error closing vCPU fd: %v", err))
}
}
// vCPUs are gone: teardown machine state.
if err := unix.Close(m.fd); err != nil {
panic(fmt.Sprintf("error closing VM fd: %v", err))
}
}
// Get gets an available vCPU.
//
// This will return with the OS thread locked.
//
// It is guaranteed that if any OS thread TID is in guest, m.vCPUs[TID] points
// to the vCPU in which the OS thread TID is running. So if Get() returns with
// the corrent context in guest, the vCPU of it must be the same as what
// Get() returns.
func (m *machine) Get() *vCPU {
m.mu.RLock()
runtime.LockOSThread()
tid := procid.Current()
// Check for an exact match.
if c := m.vCPUsByTID[tid]; c != nil {
c.lock()
m.mu.RUnlock()
return c
}
// The happy path failed. We now proceed to acquire an exclusive lock
// (because the vCPU map may change), and scan all available vCPUs.
// In this case, we first unlock the OS thread. Otherwise, if mu is
// not available, the current system thread will be parked and a new
// system thread spawned. We avoid this situation by simply refreshing
// tid after relocking the system thread.
m.mu.RUnlock()
runtime.UnlockOSThread()
m.mu.Lock()
runtime.LockOSThread()
tid = procid.Current()
// Recheck for an exact match.
if c := m.vCPUsByTID[tid]; c != nil {
c.lock()
m.mu.Unlock()
return c
}
for {
// Scan for an available vCPU.
for origTID, c := range m.vCPUsByTID {
if atomic.CompareAndSwapUint32(&c.state, vCPUReady, vCPUUser) {
delete(m.vCPUsByTID, origTID)
m.vCPUsByTID[tid] = c
m.mu.Unlock()
c.loadSegments(tid)
return c
}
}
// Get a new vCPU (maybe).
if c := m.getNewVCPU(); c != nil {
c.lock()
m.vCPUsByTID[tid] = c
m.mu.Unlock()
c.loadSegments(tid)
return c
}
// Scan for something not in user mode.
for origTID, c := range m.vCPUsByTID {
if !atomic.CompareAndSwapUint32(&c.state, vCPUGuest, vCPUGuest|vCPUWaiter) {
continue
}
// The vCPU is not be able to transition to
// vCPUGuest|vCPUWaiter or to vCPUUser because that
// transition requires holding the machine mutex, as we
// do now. There is no path to register a waiter on
// just the vCPUReady state.
for {
c.waitUntilNot(vCPUGuest | vCPUWaiter)
if atomic.CompareAndSwapUint32(&c.state, vCPUReady, vCPUUser) {
break
}
}
// Steal the vCPU.
delete(m.vCPUsByTID, origTID)
m.vCPUsByTID[tid] = c
m.mu.Unlock()
c.loadSegments(tid)
return c
}
// Everything is executing in user mode. Wait until something
// is available. Note that signaling the condition variable
// will have the extra effect of kicking the vCPUs out of guest
// mode if that's where they were.
m.available.Wait()
}
}
// Put puts the current vCPU.
func (m *machine) Put(c *vCPU) {
c.unlock()
runtime.UnlockOSThread()
m.mu.RLock()
m.available.Signal()
m.mu.RUnlock()
}
// newDirtySet returns a new dirty set.
func (m *machine) newDirtySet() *dirtySet {
return &dirtySet{
vCPUMasks: make([]uint64, (m.maxVCPUs+63)/64, (m.maxVCPUs+63)/64),
}
}
// dropPageTables drops cached page table entries.
func (m *machine) dropPageTables(pt *pagetables.PageTables) {
m.mu.Lock()
defer m.mu.Unlock()
// Clear from all PCIDs.
for _, c := range m.vCPUsByID {
if c != nil && c.PCIDs != nil {
c.PCIDs.Drop(pt)
}
}
}
// lock marks the vCPU as in user mode.
//
// This should only be called directly when known to be safe, i.e. when
// the vCPU is owned by the current TID with no chance of theft.
//
//go:nosplit
func (c *vCPU) lock() {
atomicbitops.OrUint32(&c.state, vCPUUser)
}
// unlock clears the vCPUUser bit.
//
//go:nosplit
func (c *vCPU) unlock() {
origState := atomicbitops.CompareAndSwapUint32(&c.state, vCPUUser|vCPUGuest, vCPUGuest)
if origState == vCPUUser|vCPUGuest {
// Happy path: no exits are forced, and we can continue
// executing on our merry way with a single atomic access.
return
}
// Clear the lock.
for {
state := atomicbitops.CompareAndSwapUint32(&c.state, origState, origState&^vCPUUser)
if state == origState {
break
}
origState = state
}
switch origState {
case vCPUUser:
// Normal state.
case vCPUUser | vCPUGuest | vCPUWaiter:
// Force a transition: this must trigger a notification when we
// return from guest mode. We must clear vCPUWaiter here
// anyways, because BounceToKernel will force a transition only
// from ring3 to ring0, which will not clear this bit. Halt may
// workaround the issue, but if there is no exception or
// syscall in this period, BounceToKernel will hang.
atomicbitops.AndUint32(&c.state, ^vCPUWaiter)
c.notify()
case vCPUUser | vCPUWaiter:
// Waiting for the lock to be released; the responsibility is
// on us to notify the waiter and clear the associated bit.
atomicbitops.AndUint32(&c.state, ^vCPUWaiter)
c.notify()
default:
panic("invalid state")
}
}
// NotifyInterrupt implements interrupt.Receiver.NotifyInterrupt.
//
//go:nosplit
func (c *vCPU) NotifyInterrupt() {
c.BounceToKernel()
}
// pid is used below in bounce.
var pid = unix.Getpid()
// bounce forces a return to the kernel or to host mode.
//
// This effectively unwinds the state machine.
func (c *vCPU) bounce(forceGuestExit bool) {
origGuestExits := atomic.LoadUint64(&c.guestExits)
origUserExits := atomic.LoadUint64(&c.userExits)
for {
switch state := atomic.LoadUint32(&c.state); state {
case vCPUReady, vCPUWaiter:
// There is nothing to be done, we're already in the
// kernel pre-acquisition. The Bounce criteria have
// been satisfied.
return
case vCPUUser:
// We need to register a waiter for the actual guest
// transition. When the transition takes place, then we
// can inject an interrupt to ensure a return to host
// mode.
atomic.CompareAndSwapUint32(&c.state, state, state|vCPUWaiter)
case vCPUUser | vCPUWaiter:
// Wait for the transition to guest mode. This should
// come from the bluepill handler.
c.waitUntilNot(state)
case vCPUGuest, vCPUUser | vCPUGuest:
if state == vCPUGuest && !forceGuestExit {
// The vCPU is already not acquired, so there's
// no need to do a fresh injection here.
return
}
// The vCPU is in user or kernel mode. Attempt to
// register a notification on change.
if !atomic.CompareAndSwapUint32(&c.state, state, state|vCPUWaiter) {
break // Retry.
}
for {
// We need to spin here until the signal is
// delivered, because Tgkill can return EAGAIN
// under memory pressure. Since we already
// marked ourselves as a waiter, we need to
// ensure that a signal is actually delivered.
if err := unix.Tgkill(pid, int(atomic.LoadUint64(&c.tid)), bounceSignal); err == nil {
break
} else if err.(unix.Errno) == unix.EAGAIN {
continue
} else {
// Nothing else should be returned by tgkill.
panic(fmt.Sprintf("unexpected tgkill error: %v", err))
}
}
case vCPUGuest | vCPUWaiter, vCPUUser | vCPUGuest | vCPUWaiter:
if state == vCPUGuest|vCPUWaiter && !forceGuestExit {
// See above.
return
}
// Wait for the transition. This again should happen
// from the bluepill handler, but on the way out.
c.waitUntilNot(state)
default:
// Should not happen: the above is exhaustive.
panic("invalid state")
}
// Check if we've missed the state transition, but
// we can safely return at this point in time.
newGuestExits := atomic.LoadUint64(&c.guestExits)
newUserExits := atomic.LoadUint64(&c.userExits)
if newUserExits != origUserExits && (!forceGuestExit || newGuestExits != origGuestExits) {
return
}
}
}
// BounceToKernel ensures that the vCPU bounces back to the kernel.
//
//go:nosplit
func (c *vCPU) BounceToKernel() {
c.bounce(false)
}
// BounceToHost ensures that the vCPU is in host mode.
//
//go:nosplit
func (c *vCPU) BounceToHost() {
c.bounce(true)
}
// setSystemTimeLegacy calibrates and sets an approximate system time.
func (c *vCPU) setSystemTimeLegacy() error {
const minIterations = 10
minimum := uint64(0)
for iter := 0; ; iter++ {
// Try to set the TSC to an estimate of where it will be
// on the host during a "fast" system call iteration.
start := uint64(ktime.Rdtsc())
if err := c.setTSC(start + (minimum / 2)); err != nil {
return err
}
// See if this is our new minimum call time. Note that this
// serves two functions: one, we make sure that we are
// accurately predicting the offset we need to set. Second, we
// don't want to do the final set on a slow call, which could
// produce a really bad result.
end := uint64(ktime.Rdtsc())
if end < start {
continue // Totally bogus: unstable TSC?
}
current := end - start
if current < minimum || iter == 0 {
minimum = current // Set our new minimum.
}
// Is this past minIterations and within ~10% of minimum?
upperThreshold := (((minimum << 3) + minimum) >> 3)
if iter >= minIterations && current <= upperThreshold {
return nil
}
}
}
|