summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/mm/syscalls.go
blob: 69e37330b114993295757b19abda70d521f2d6f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package mm

import (
	"fmt"
	mrand "math/rand"
	"sync/atomic"

	"gvisor.dev/gvisor/pkg/abi/linux"
	"gvisor.dev/gvisor/pkg/context"
	"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
	"gvisor.dev/gvisor/pkg/sentry/kernel/futex"
	"gvisor.dev/gvisor/pkg/sentry/limits"
	"gvisor.dev/gvisor/pkg/sentry/memmap"
	"gvisor.dev/gvisor/pkg/syserror"
	"gvisor.dev/gvisor/pkg/usermem"
)

// HandleUserFault handles an application page fault. sp is the faulting
// application thread's stack pointer.
//
// Preconditions: mm.as != nil.
func (mm *MemoryManager) HandleUserFault(ctx context.Context, addr usermem.Addr, at usermem.AccessType, sp usermem.Addr) error {
	ar, ok := addr.RoundDown().ToRange(usermem.PageSize)
	if !ok {
		return syserror.EFAULT
	}

	// Don't bother trying existingPMAsLocked; in most cases, if we did have
	// existing pmas, we wouldn't have faulted.

	// Ensure that we have a usable vma. Here and below, since we are only
	// asking for a single page, there is no possibility of partial success,
	// and any error is immediately fatal.
	mm.mappingMu.RLock()
	vseg, _, err := mm.getVMAsLocked(ctx, ar, at, false)
	if err != nil {
		mm.mappingMu.RUnlock()
		return err
	}

	// Ensure that we have a usable pma.
	mm.activeMu.Lock()
	pseg, _, err := mm.getPMAsLocked(ctx, vseg, ar, at)
	mm.mappingMu.RUnlock()
	if err != nil {
		mm.activeMu.Unlock()
		return err
	}

	// Downgrade to a read-lock on activeMu since we don't need to mutate pmas
	// anymore.
	mm.activeMu.DowngradeLock()

	// Map the faulted page into the active AddressSpace.
	err = mm.mapASLocked(pseg, ar, false)
	mm.activeMu.RUnlock()
	return err
}

// MMap establishes a memory mapping.
func (mm *MemoryManager) MMap(ctx context.Context, opts memmap.MMapOpts) (usermem.Addr, error) {
	if opts.Length == 0 {
		return 0, syserror.EINVAL
	}
	length, ok := usermem.Addr(opts.Length).RoundUp()
	if !ok {
		return 0, syserror.ENOMEM
	}
	opts.Length = uint64(length)

	if opts.Mappable != nil {
		// Offset must be aligned.
		if usermem.Addr(opts.Offset).RoundDown() != usermem.Addr(opts.Offset) {
			return 0, syserror.EINVAL
		}
		// Offset + length must not overflow.
		if end := opts.Offset + opts.Length; end < opts.Offset {
			return 0, syserror.ENOMEM
		}
	} else {
		opts.Offset = 0
	}

	if opts.Addr.RoundDown() != opts.Addr {
		// MAP_FIXED requires addr to be page-aligned; non-fixed mappings
		// don't.
		if opts.Fixed {
			return 0, syserror.EINVAL
		}
		opts.Addr = opts.Addr.RoundDown()
	}

	if !opts.MaxPerms.SupersetOf(opts.Perms) {
		return 0, syserror.EACCES
	}
	if opts.Unmap && !opts.Fixed {
		return 0, syserror.EINVAL
	}
	if opts.GrowsDown && opts.Mappable != nil {
		return 0, syserror.EINVAL
	}

	// Get the new vma.
	mm.mappingMu.Lock()
	if opts.MLockMode < mm.defMLockMode {
		opts.MLockMode = mm.defMLockMode
	}
	vseg, ar, err := mm.createVMALocked(ctx, opts)
	if err != nil {
		mm.mappingMu.Unlock()
		return 0, err
	}

	// TODO(jamieliu): In Linux, VM_LOCKONFAULT (which may be set on the new
	// vma by mlockall(MCL_FUTURE|MCL_ONFAULT) => mm_struct::def_flags) appears
	// to effectively disable MAP_POPULATE by unsetting FOLL_POPULATE in
	// mm/util.c:vm_mmap_pgoff() => mm/gup.c:__mm_populate() =>
	// populate_vma_page_range(). Confirm this behavior.
	switch {
	case opts.Precommit || opts.MLockMode == memmap.MLockEager:
		// Get pmas and map with precommit as requested.
		mm.populateVMAAndUnlock(ctx, vseg, ar, true)

	case opts.Mappable == nil && length <= privateAllocUnit:
		// NOTE(b/63077076, b/63360184): Get pmas and map eagerly in the hope
		// that doing so will save on future page faults. We only do this for
		// anonymous mappings, since otherwise the cost of
		// memmap.Mappable.Translate is unknown; and only for small mappings,
		// to avoid needing to allocate large amounts of memory that we may
		// subsequently need to checkpoint.
		mm.populateVMAAndUnlock(ctx, vseg, ar, false)

	default:
		mm.mappingMu.Unlock()
	}

	return ar.Start, nil
}

// populateVMA obtains pmas for addresses in ar in the given vma, and maps them
// into mm.as if it is active.
//
// Preconditions:
// * mm.mappingMu must be locked.
// * vseg.Range().IsSupersetOf(ar).
func (mm *MemoryManager) populateVMA(ctx context.Context, vseg vmaIterator, ar usermem.AddrRange, precommit bool) {
	if !vseg.ValuePtr().effectivePerms.Any() {
		// Linux doesn't populate inaccessible pages. See
		// mm/gup.c:populate_vma_page_range.
		return
	}

	mm.activeMu.Lock()
	// Can't defer mm.activeMu.Unlock(); see below.

	// Even if we get new pmas, we can't actually map them if we don't have an
	// AddressSpace.
	if mm.as == nil {
		mm.activeMu.Unlock()
		return
	}

	// Ensure that we have usable pmas.
	pseg, _, err := mm.getPMAsLocked(ctx, vseg, ar, usermem.NoAccess)
	if err != nil {
		// mm/util.c:vm_mmap_pgoff() ignores the error, if any, from
		// mm/gup.c:mm_populate(). If it matters, we'll get it again when
		// userspace actually tries to use the failing page.
		mm.activeMu.Unlock()
		return
	}

	// Downgrade to a read-lock on activeMu since we don't need to mutate pmas
	// anymore.
	mm.activeMu.DowngradeLock()

	// As above, errors are silently ignored.
	mm.mapASLocked(pseg, ar, precommit)
	mm.activeMu.RUnlock()
}

// populateVMAAndUnlock is equivalent to populateVMA, but also unconditionally
// unlocks mm.mappingMu. In cases where populateVMAAndUnlock is usable, it is
// preferable to populateVMA since it unlocks mm.mappingMu before performing
// expensive operations that don't require it to be locked.
//
// Preconditions:
// * mm.mappingMu must be locked for writing.
// * vseg.Range().IsSupersetOf(ar).
//
// Postconditions: mm.mappingMu will be unlocked.
func (mm *MemoryManager) populateVMAAndUnlock(ctx context.Context, vseg vmaIterator, ar usermem.AddrRange, precommit bool) {
	// See populateVMA above for commentary.
	if !vseg.ValuePtr().effectivePerms.Any() {
		mm.mappingMu.Unlock()
		return
	}

	mm.activeMu.Lock()

	if mm.as == nil {
		mm.activeMu.Unlock()
		mm.mappingMu.Unlock()
		return
	}

	// mm.mappingMu doesn't need to be write-locked for getPMAsLocked, and it
	// isn't needed at all for mapASLocked.
	mm.mappingMu.DowngradeLock()
	pseg, _, err := mm.getPMAsLocked(ctx, vseg, ar, usermem.NoAccess)
	mm.mappingMu.RUnlock()
	if err != nil {
		mm.activeMu.Unlock()
		return
	}

	mm.activeMu.DowngradeLock()
	mm.mapASLocked(pseg, ar, precommit)
	mm.activeMu.RUnlock()
}

// MapStack allocates the initial process stack.
func (mm *MemoryManager) MapStack(ctx context.Context) (usermem.AddrRange, error) {
	// maxStackSize is the maximum supported process stack size in bytes.
	//
	// This limit exists because stack growing isn't implemented, so the entire
	// process stack must be mapped up-front.
	const maxStackSize = 128 << 20

	stackSize := limits.FromContext(ctx).Get(limits.Stack)
	r, ok := usermem.Addr(stackSize.Cur).RoundUp()
	sz := uint64(r)
	if !ok {
		// RLIM_INFINITY rounds up to 0.
		sz = linux.DefaultStackSoftLimit
	} else if sz > maxStackSize {
		ctx.Warningf("Capping stack size from RLIMIT_STACK of %v down to %v.", sz, maxStackSize)
		sz = maxStackSize
	} else if sz == 0 {
		return usermem.AddrRange{}, syserror.ENOMEM
	}
	szaddr := usermem.Addr(sz)
	ctx.Debugf("Allocating stack with size of %v bytes", sz)

	// Determine the stack's desired location. Unlike Linux, address
	// randomization can't be disabled.
	stackEnd := mm.layout.MaxAddr - usermem.Addr(mrand.Int63n(int64(mm.layout.MaxStackRand))).RoundDown()
	if stackEnd < szaddr {
		return usermem.AddrRange{}, syserror.ENOMEM
	}
	stackStart := stackEnd - szaddr
	mm.mappingMu.Lock()
	defer mm.mappingMu.Unlock()
	_, ar, err := mm.createVMALocked(ctx, memmap.MMapOpts{
		Length:    sz,
		Addr:      stackStart,
		Perms:     usermem.ReadWrite,
		MaxPerms:  usermem.AnyAccess,
		Private:   true,
		GrowsDown: true,
		MLockMode: mm.defMLockMode,
		Hint:      "[stack]",
	})
	return ar, err
}

// MUnmap implements the semantics of Linux's munmap(2).
func (mm *MemoryManager) MUnmap(ctx context.Context, addr usermem.Addr, length uint64) error {
	if addr != addr.RoundDown() {
		return syserror.EINVAL
	}
	if length == 0 {
		return syserror.EINVAL
	}
	la, ok := usermem.Addr(length).RoundUp()
	if !ok {
		return syserror.EINVAL
	}
	ar, ok := addr.ToRange(uint64(la))
	if !ok {
		return syserror.EINVAL
	}

	mm.mappingMu.Lock()
	defer mm.mappingMu.Unlock()
	mm.unmapLocked(ctx, ar)
	return nil
}

// MRemapOpts specifies options to MRemap.
type MRemapOpts struct {
	// Move controls whether MRemap moves the remapped mapping to a new address.
	Move MRemapMoveMode

	// NewAddr is the new address for the remapping. NewAddr is ignored unless
	// Move is MMRemapMustMove.
	NewAddr usermem.Addr
}

// MRemapMoveMode controls MRemap's moving behavior.
type MRemapMoveMode int

const (
	// MRemapNoMove prevents MRemap from moving the remapped mapping.
	MRemapNoMove MRemapMoveMode = iota

	// MRemapMayMove allows MRemap to move the remapped mapping.
	MRemapMayMove

	// MRemapMustMove requires MRemap to move the remapped mapping to
	// MRemapOpts.NewAddr, replacing any existing mappings in the remapped
	// range.
	MRemapMustMove
)

// MRemap implements the semantics of Linux's mremap(2).
func (mm *MemoryManager) MRemap(ctx context.Context, oldAddr usermem.Addr, oldSize uint64, newSize uint64, opts MRemapOpts) (usermem.Addr, error) {
	// "Note that old_address has to be page aligned." - mremap(2)
	if oldAddr.RoundDown() != oldAddr {
		return 0, syserror.EINVAL
	}

	// Linux treats an old_size that rounds up to 0 as 0, which is otherwise a
	// valid size. However, new_size can't be 0 after rounding.
	oldSizeAddr, _ := usermem.Addr(oldSize).RoundUp()
	oldSize = uint64(oldSizeAddr)
	newSizeAddr, ok := usermem.Addr(newSize).RoundUp()
	if !ok || newSizeAddr == 0 {
		return 0, syserror.EINVAL
	}
	newSize = uint64(newSizeAddr)

	oldEnd, ok := oldAddr.AddLength(oldSize)
	if !ok {
		return 0, syserror.EINVAL
	}

	mm.mappingMu.Lock()
	defer mm.mappingMu.Unlock()

	// All cases require that a vma exists at oldAddr.
	vseg := mm.vmas.FindSegment(oldAddr)
	if !vseg.Ok() {
		return 0, syserror.EFAULT
	}

	// Behavior matrix:
	//
	// Move     | oldSize = 0 | oldSize < newSize | oldSize = newSize | oldSize > newSize
	// ---------+-------------+-------------------+-------------------+------------------
	//   NoMove | ENOMEM [1]  | Grow in-place     | No-op             | Shrink in-place
	//  MayMove | Copy [1]    | Grow in-place or  | No-op             | Shrink in-place
	//          |             |   move            |                   |
	// MustMove | Copy        | Move and grow     | Move              | Shrink and move
	//
	// [1] In-place growth is impossible because the vma at oldAddr already
	// occupies at least part of the destination. Thus the NoMove case always
	// fails and the MayMove case always falls back to copying.

	if vma := vseg.ValuePtr(); newSize > oldSize && vma.mlockMode != memmap.MLockNone {
		// Check against RLIMIT_MEMLOCK. Unlike mmap, mlock, and mlockall,
		// mremap in Linux does not check mm/mlock.c:can_do_mlock() and
		// therefore does not return EPERM if RLIMIT_MEMLOCK is 0 and
		// !CAP_IPC_LOCK.
		mlockLimit := limits.FromContext(ctx).Get(limits.MemoryLocked).Cur
		if creds := auth.CredentialsFromContext(ctx); !creds.HasCapabilityIn(linux.CAP_IPC_LOCK, creds.UserNamespace.Root()) {
			if newLockedAS := mm.lockedAS - oldSize + newSize; newLockedAS > mlockLimit {
				return 0, syserror.EAGAIN
			}
		}
	}

	if opts.Move != MRemapMustMove {
		// Handle no-ops and in-place shrinking. These cases don't care if
		// [oldAddr, oldEnd) maps to a single vma, or is even mapped at all
		// (aside from oldAddr).
		if newSize <= oldSize {
			if newSize < oldSize {
				// If oldAddr+oldSize didn't overflow, oldAddr+newSize can't
				// either.
				newEnd := oldAddr + usermem.Addr(newSize)
				mm.unmapLocked(ctx, usermem.AddrRange{newEnd, oldEnd})
			}
			return oldAddr, nil
		}

		// Handle in-place growing.

		// Check that oldEnd maps to the same vma as oldAddr.
		if vseg.End() < oldEnd {
			return 0, syserror.EFAULT
		}
		// "Grow" the existing vma by creating a new mergeable one.
		vma := vseg.ValuePtr()
		var newOffset uint64
		if vma.mappable != nil {
			newOffset = vseg.mappableRange().End
		}
		vseg, ar, err := mm.createVMALocked(ctx, memmap.MMapOpts{
			Length:          newSize - oldSize,
			MappingIdentity: vma.id,
			Mappable:        vma.mappable,
			Offset:          newOffset,
			Addr:            oldEnd,
			Fixed:           true,
			Perms:           vma.realPerms,
			MaxPerms:        vma.maxPerms,
			Private:         vma.private,
			GrowsDown:       vma.growsDown,
			MLockMode:       vma.mlockMode,
			Hint:            vma.hint,
		})
		if err == nil {
			if vma.mlockMode == memmap.MLockEager {
				mm.populateVMA(ctx, vseg, ar, true)
			}
			return oldAddr, nil
		}
		// In-place growth failed. In the MRemapMayMove case, fall through to
		// copying/moving below.
		if opts.Move == MRemapNoMove {
			return 0, err
		}
	}

	// Find a location for the new mapping.
	var newAR usermem.AddrRange
	switch opts.Move {
	case MRemapMayMove:
		newAddr, err := mm.findAvailableLocked(newSize, findAvailableOpts{})
		if err != nil {
			return 0, err
		}
		newAR, _ = newAddr.ToRange(newSize)

	case MRemapMustMove:
		newAddr := opts.NewAddr
		if newAddr.RoundDown() != newAddr {
			return 0, syserror.EINVAL
		}
		var ok bool
		newAR, ok = newAddr.ToRange(newSize)
		if !ok {
			return 0, syserror.EINVAL
		}
		if (usermem.AddrRange{oldAddr, oldEnd}).Overlaps(newAR) {
			return 0, syserror.EINVAL
		}

		// Check that the new region is valid.
		_, err := mm.findAvailableLocked(newSize, findAvailableOpts{
			Addr:  newAddr,
			Fixed: true,
			Unmap: true,
		})
		if err != nil {
			return 0, err
		}

		// Unmap any mappings at the destination.
		mm.unmapLocked(ctx, newAR)

		// If the sizes specify shrinking, unmap everything between the new and
		// old sizes at the source. Unmapping before the following checks is
		// correct: compare Linux's mm/mremap.c:mremap_to() => do_munmap(),
		// vma_to_resize().
		if newSize < oldSize {
			oldNewEnd := oldAddr + usermem.Addr(newSize)
			mm.unmapLocked(ctx, usermem.AddrRange{oldNewEnd, oldEnd})
			oldEnd = oldNewEnd
		}

		// unmapLocked may have invalidated vseg; look it up again.
		vseg = mm.vmas.FindSegment(oldAddr)
	}

	oldAR := usermem.AddrRange{oldAddr, oldEnd}

	// Check that oldEnd maps to the same vma as oldAddr.
	if vseg.End() < oldEnd {
		return 0, syserror.EFAULT
	}

	// Check against RLIMIT_AS.
	newUsageAS := mm.usageAS - uint64(oldAR.Length()) + uint64(newAR.Length())
	if limitAS := limits.FromContext(ctx).Get(limits.AS).Cur; newUsageAS > limitAS {
		return 0, syserror.ENOMEM
	}

	if vma := vseg.ValuePtr(); vma.mappable != nil {
		// Check that offset+length does not overflow.
		if vma.off+uint64(newAR.Length()) < vma.off {
			return 0, syserror.EINVAL
		}
		// Inform the Mappable, if any, of the new mapping.
		if err := vma.mappable.CopyMapping(ctx, mm, oldAR, newAR, vseg.mappableOffsetAt(oldAR.Start), vma.canWriteMappableLocked()); err != nil {
			return 0, err
		}
	}

	if oldSize == 0 {
		// Handle copying.
		//
		// We can't use createVMALocked because it calls Mappable.AddMapping,
		// whereas we've already called Mappable.CopyMapping (which is
		// consistent with Linux). Call vseg.Value() (rather than
		// vseg.ValuePtr()) to make a copy of the vma.
		vma := vseg.Value()
		if vma.mappable != nil {
			vma.off = vseg.mappableOffsetAt(oldAR.Start)
		}
		if vma.id != nil {
			vma.id.IncRef()
		}
		vseg := mm.vmas.Insert(mm.vmas.FindGap(newAR.Start), newAR, vma)
		mm.usageAS += uint64(newAR.Length())
		if vma.isPrivateDataLocked() {
			mm.dataAS += uint64(newAR.Length())
		}
		if vma.mlockMode != memmap.MLockNone {
			mm.lockedAS += uint64(newAR.Length())
			if vma.mlockMode == memmap.MLockEager {
				mm.populateVMA(ctx, vseg, newAR, true)
			}
		}
		return newAR.Start, nil
	}

	// Handle moving.
	//
	// Remove the existing vma before inserting the new one to minimize
	// iterator invalidation. We do this directly (instead of calling
	// removeVMAsLocked) because:
	//
	// 1. We can't drop the reference on vma.id, which will be transferred to
	// the new vma.
	//
	// 2. We can't call vma.mappable.RemoveMapping, because pmas are still at
	// oldAR, so calling RemoveMapping could cause us to miss an invalidation
	// overlapping oldAR.
	//
	// Call vseg.Value() (rather than vseg.ValuePtr()) to make a copy of the
	// vma.
	vseg = mm.vmas.Isolate(vseg, oldAR)
	vma := vseg.Value()
	mm.vmas.Remove(vseg)
	vseg = mm.vmas.Insert(mm.vmas.FindGap(newAR.Start), newAR, vma)
	mm.usageAS = mm.usageAS - uint64(oldAR.Length()) + uint64(newAR.Length())
	if vma.isPrivateDataLocked() {
		mm.dataAS = mm.dataAS - uint64(oldAR.Length()) + uint64(newAR.Length())
	}
	if vma.mlockMode != memmap.MLockNone {
		mm.lockedAS = mm.lockedAS - uint64(oldAR.Length()) + uint64(newAR.Length())
	}

	// Move pmas. This is technically optional for non-private pmas, which
	// could just go through memmap.Mappable.Translate again, but it's required
	// for private pmas.
	mm.activeMu.Lock()
	mm.movePMAsLocked(oldAR, newAR)
	mm.activeMu.Unlock()

	// Now that pmas have been moved to newAR, we can notify vma.mappable that
	// oldAR is no longer mapped.
	if vma.mappable != nil {
		vma.mappable.RemoveMapping(ctx, mm, oldAR, vma.off, vma.canWriteMappableLocked())
	}

	if vma.mlockMode == memmap.MLockEager {
		mm.populateVMA(ctx, vseg, newAR, true)
	}

	return newAR.Start, nil
}

// MProtect implements the semantics of Linux's mprotect(2).
func (mm *MemoryManager) MProtect(addr usermem.Addr, length uint64, realPerms usermem.AccessType, growsDown bool) error {
	if addr.RoundDown() != addr {
		return syserror.EINVAL
	}
	if length == 0 {
		return nil
	}
	rlength, ok := usermem.Addr(length).RoundUp()
	if !ok {
		return syserror.ENOMEM
	}
	ar, ok := addr.ToRange(uint64(rlength))
	if !ok {
		return syserror.ENOMEM
	}
	effectivePerms := realPerms.Effective()

	mm.mappingMu.Lock()
	defer mm.mappingMu.Unlock()
	// Non-growsDown mprotect requires that all of ar is mapped, and stops at
	// the first non-empty gap. growsDown mprotect requires that the first vma
	// be growsDown, but does not require it to extend all the way to ar.Start;
	// vmas after the first must be contiguous but need not be growsDown, like
	// the non-growsDown case.
	vseg := mm.vmas.LowerBoundSegment(ar.Start)
	if !vseg.Ok() {
		return syserror.ENOMEM
	}
	if growsDown {
		if !vseg.ValuePtr().growsDown {
			return syserror.EINVAL
		}
		if ar.End <= vseg.Start() {
			return syserror.ENOMEM
		}
		ar.Start = vseg.Start()
	} else {
		if ar.Start < vseg.Start() {
			return syserror.ENOMEM
		}
	}

	mm.activeMu.Lock()
	defer mm.activeMu.Unlock()
	defer func() {
		mm.vmas.MergeRange(ar)
		mm.vmas.MergeAdjacent(ar)
		mm.pmas.MergeRange(ar)
		mm.pmas.MergeAdjacent(ar)
	}()
	pseg := mm.pmas.LowerBoundSegment(ar.Start)
	var didUnmapAS bool
	for {
		// Check for permission validity before splitting vmas, for consistency
		// with Linux.
		if !vseg.ValuePtr().maxPerms.SupersetOf(effectivePerms) {
			return syserror.EACCES
		}
		vseg = mm.vmas.Isolate(vseg, ar)

		// Update vma permissions.
		vma := vseg.ValuePtr()
		vmaLength := vseg.Range().Length()
		if vma.isPrivateDataLocked() {
			mm.dataAS -= uint64(vmaLength)
		}

		vma.realPerms = realPerms
		vma.effectivePerms = effectivePerms
		if vma.isPrivateDataLocked() {
			mm.dataAS += uint64(vmaLength)
		}

		// Propagate vma permission changes to pmas.
		for pseg.Ok() && pseg.Start() < vseg.End() {
			if pseg.Range().Overlaps(vseg.Range()) {
				pseg = mm.pmas.Isolate(pseg, vseg.Range())
				pma := pseg.ValuePtr()
				if !effectivePerms.SupersetOf(pma.effectivePerms) && !didUnmapAS {
					// Unmap all of ar, not just vseg.Range(), to minimize host
					// syscalls.
					mm.unmapASLocked(ar)
					didUnmapAS = true
				}
				pma.effectivePerms = effectivePerms.Intersect(pma.translatePerms)
				if pma.needCOW {
					pma.effectivePerms.Write = false
				}
			}
			pseg = pseg.NextSegment()
		}

		// Continue to the next vma.
		if ar.End <= vseg.End() {
			return nil
		}
		vseg, _ = vseg.NextNonEmpty()
		if !vseg.Ok() {
			return syserror.ENOMEM
		}
	}
}

// BrkSetup sets mm's brk address to addr and its brk size to 0.
func (mm *MemoryManager) BrkSetup(ctx context.Context, addr usermem.Addr) {
	mm.mappingMu.Lock()
	defer mm.mappingMu.Unlock()
	// Unmap the existing brk.
	if mm.brk.Length() != 0 {
		mm.unmapLocked(ctx, mm.brk)
	}
	mm.brk = usermem.AddrRange{addr, addr}
}

// Brk implements the semantics of Linux's brk(2), except that it returns an
// error on failure.
func (mm *MemoryManager) Brk(ctx context.Context, addr usermem.Addr) (usermem.Addr, error) {
	mm.mappingMu.Lock()
	// Can't defer mm.mappingMu.Unlock(); see below.

	if addr < mm.brk.Start {
		addr = mm.brk.End
		mm.mappingMu.Unlock()
		return addr, syserror.EINVAL
	}

	// TODO(gvisor.dev/issue/156): This enforces RLIMIT_DATA, but is
	// slightly more permissive than the usual data limit. In particular,
	// this only limits the size of the heap; a true RLIMIT_DATA limits the
	// size of heap + data + bss. The segment sizes need to be plumbed from
	// the loader package to fully enforce RLIMIT_DATA.
	if uint64(addr-mm.brk.Start) > limits.FromContext(ctx).Get(limits.Data).Cur {
		addr = mm.brk.End
		mm.mappingMu.Unlock()
		return addr, syserror.ENOMEM
	}

	oldbrkpg, _ := mm.brk.End.RoundUp()
	newbrkpg, ok := addr.RoundUp()
	if !ok {
		addr = mm.brk.End
		mm.mappingMu.Unlock()
		return addr, syserror.EFAULT
	}

	switch {
	case oldbrkpg < newbrkpg:
		vseg, ar, err := mm.createVMALocked(ctx, memmap.MMapOpts{
			Length: uint64(newbrkpg - oldbrkpg),
			Addr:   oldbrkpg,
			Fixed:  true,
			// Compare Linux's
			// arch/x86/include/asm/page_types.h:VM_DATA_DEFAULT_FLAGS.
			Perms:    usermem.ReadWrite,
			MaxPerms: usermem.AnyAccess,
			Private:  true,
			// Linux: mm/mmap.c:sys_brk() => do_brk_flags() includes
			// mm->def_flags.
			MLockMode: mm.defMLockMode,
			Hint:      "[heap]",
		})
		if err != nil {
			addr = mm.brk.End
			mm.mappingMu.Unlock()
			return addr, err
		}
		mm.brk.End = addr
		if mm.defMLockMode == memmap.MLockEager {
			mm.populateVMAAndUnlock(ctx, vseg, ar, true)
		} else {
			mm.mappingMu.Unlock()
		}

	case newbrkpg < oldbrkpg:
		mm.unmapLocked(ctx, usermem.AddrRange{newbrkpg, oldbrkpg})
		fallthrough

	default:
		mm.brk.End = addr
		mm.mappingMu.Unlock()
	}

	return addr, nil
}

// MLock implements the semantics of Linux's mlock()/mlock2()/munlock(),
// depending on mode.
func (mm *MemoryManager) MLock(ctx context.Context, addr usermem.Addr, length uint64, mode memmap.MLockMode) error {
	// Linux allows this to overflow.
	la, _ := usermem.Addr(length + addr.PageOffset()).RoundUp()
	ar, ok := addr.RoundDown().ToRange(uint64(la))
	if !ok {
		return syserror.EINVAL
	}

	mm.mappingMu.Lock()
	// Can't defer mm.mappingMu.Unlock(); see below.

	if mode != memmap.MLockNone {
		// Check against RLIMIT_MEMLOCK.
		if creds := auth.CredentialsFromContext(ctx); !creds.HasCapabilityIn(linux.CAP_IPC_LOCK, creds.UserNamespace.Root()) {
			mlockLimit := limits.FromContext(ctx).Get(limits.MemoryLocked).Cur
			if mlockLimit == 0 {
				mm.mappingMu.Unlock()
				return syserror.EPERM
			}
			if newLockedAS := mm.lockedAS + uint64(ar.Length()) - mm.mlockedBytesRangeLocked(ar); newLockedAS > mlockLimit {
				mm.mappingMu.Unlock()
				return syserror.ENOMEM
			}
		}
	}

	// Check this after RLIMIT_MEMLOCK for consistency with Linux.
	if ar.Length() == 0 {
		mm.mappingMu.Unlock()
		return nil
	}

	// Apply the new mlock mode to vmas.
	var unmapped bool
	vseg := mm.vmas.FindSegment(ar.Start)
	for {
		if !vseg.Ok() {
			unmapped = true
			break
		}
		vseg = mm.vmas.Isolate(vseg, ar)
		vma := vseg.ValuePtr()
		prevMode := vma.mlockMode
		vma.mlockMode = mode
		if mode != memmap.MLockNone && prevMode == memmap.MLockNone {
			mm.lockedAS += uint64(vseg.Range().Length())
		} else if mode == memmap.MLockNone && prevMode != memmap.MLockNone {
			mm.lockedAS -= uint64(vseg.Range().Length())
		}
		if ar.End <= vseg.End() {
			break
		}
		vseg, _ = vseg.NextNonEmpty()
	}
	mm.vmas.MergeRange(ar)
	mm.vmas.MergeAdjacent(ar)
	if unmapped {
		mm.mappingMu.Unlock()
		return syserror.ENOMEM
	}

	if mode == memmap.MLockEager {
		// Ensure that we have usable pmas. Since we didn't return ENOMEM
		// above, ar must be fully covered by vmas, so we can just use
		// NextSegment below.
		mm.activeMu.Lock()
		mm.mappingMu.DowngradeLock()
		for vseg := mm.vmas.FindSegment(ar.Start); vseg.Ok() && vseg.Start() < ar.End; vseg = vseg.NextSegment() {
			if !vseg.ValuePtr().effectivePerms.Any() {
				// Linux: mm/gup.c:__get_user_pages() returns EFAULT in this
				// case, which is converted to ENOMEM by mlock.
				mm.activeMu.Unlock()
				mm.mappingMu.RUnlock()
				return syserror.ENOMEM
			}
			_, _, err := mm.getPMAsLocked(ctx, vseg, vseg.Range().Intersect(ar), usermem.NoAccess)
			if err != nil {
				mm.activeMu.Unlock()
				mm.mappingMu.RUnlock()
				// Linux: mm/mlock.c:__mlock_posix_error_return()
				if err == syserror.EFAULT {
					return syserror.ENOMEM
				}
				if err == syserror.ENOMEM {
					return syserror.EAGAIN
				}
				return err
			}
		}

		// Map pmas into the active AddressSpace, if we have one.
		mm.mappingMu.RUnlock()
		if mm.as != nil {
			mm.activeMu.DowngradeLock()
			err := mm.mapASLocked(mm.pmas.LowerBoundSegment(ar.Start), ar, true /* precommit */)
			mm.activeMu.RUnlock()
			if err != nil {
				return err
			}
		} else {
			mm.activeMu.Unlock()
		}
	} else {
		mm.mappingMu.Unlock()
	}

	return nil
}

// MLockAllOpts holds options to MLockAll.
type MLockAllOpts struct {
	// If Current is true, change the memory-locking behavior of all mappings
	// to Mode. If Future is true, upgrade the memory-locking behavior of all
	// future mappings to Mode. At least one of Current or Future must be true.
	Current bool
	Future  bool
	Mode    memmap.MLockMode
}

// MLockAll implements the semantics of Linux's mlockall()/munlockall(),
// depending on opts.
func (mm *MemoryManager) MLockAll(ctx context.Context, opts MLockAllOpts) error {
	if !opts.Current && !opts.Future {
		return syserror.EINVAL
	}

	mm.mappingMu.Lock()
	// Can't defer mm.mappingMu.Unlock(); see below.

	if opts.Current {
		if opts.Mode != memmap.MLockNone {
			// Check against RLIMIT_MEMLOCK.
			if creds := auth.CredentialsFromContext(ctx); !creds.HasCapabilityIn(linux.CAP_IPC_LOCK, creds.UserNamespace.Root()) {
				mlockLimit := limits.FromContext(ctx).Get(limits.MemoryLocked).Cur
				if mlockLimit == 0 {
					mm.mappingMu.Unlock()
					return syserror.EPERM
				}
				if uint64(mm.vmas.Span()) > mlockLimit {
					mm.mappingMu.Unlock()
					return syserror.ENOMEM
				}
			}
		}
		for vseg := mm.vmas.FirstSegment(); vseg.Ok(); vseg = vseg.NextSegment() {
			vma := vseg.ValuePtr()
			prevMode := vma.mlockMode
			vma.mlockMode = opts.Mode
			if opts.Mode != memmap.MLockNone && prevMode == memmap.MLockNone {
				mm.lockedAS += uint64(vseg.Range().Length())
			} else if opts.Mode == memmap.MLockNone && prevMode != memmap.MLockNone {
				mm.lockedAS -= uint64(vseg.Range().Length())
			}
		}
	}

	if opts.Future {
		mm.defMLockMode = opts.Mode
	}

	if opts.Current && opts.Mode == memmap.MLockEager {
		// Linux: mm/mlock.c:sys_mlockall() => include/linux/mm.h:mm_populate()
		// ignores the return value of __mm_populate(), so all errors below are
		// ignored.
		//
		// Try to get usable pmas.
		mm.activeMu.Lock()
		mm.mappingMu.DowngradeLock()
		for vseg := mm.vmas.FirstSegment(); vseg.Ok(); vseg = vseg.NextSegment() {
			if vseg.ValuePtr().effectivePerms.Any() {
				mm.getPMAsLocked(ctx, vseg, vseg.Range(), usermem.NoAccess)
			}
		}

		// Map all pmas into the active AddressSpace, if we have one.
		mm.mappingMu.RUnlock()
		if mm.as != nil {
			mm.activeMu.DowngradeLock()
			mm.mapASLocked(mm.pmas.FirstSegment(), mm.applicationAddrRange(), true /* precommit */)
			mm.activeMu.RUnlock()
		} else {
			mm.activeMu.Unlock()
		}
	} else {
		mm.mappingMu.Unlock()
	}
	return nil
}

// NumaPolicy implements the semantics of Linux's get_mempolicy(MPOL_F_ADDR).
func (mm *MemoryManager) NumaPolicy(addr usermem.Addr) (linux.NumaPolicy, uint64, error) {
	mm.mappingMu.RLock()
	defer mm.mappingMu.RUnlock()
	vseg := mm.vmas.FindSegment(addr)
	if !vseg.Ok() {
		return 0, 0, syserror.EFAULT
	}
	vma := vseg.ValuePtr()
	return vma.numaPolicy, vma.numaNodemask, nil
}

// SetNumaPolicy implements the semantics of Linux's mbind().
func (mm *MemoryManager) SetNumaPolicy(addr usermem.Addr, length uint64, policy linux.NumaPolicy, nodemask uint64) error {
	if !addr.IsPageAligned() {
		return syserror.EINVAL
	}
	// Linux allows this to overflow.
	la, _ := usermem.Addr(length).RoundUp()
	ar, ok := addr.ToRange(uint64(la))
	if !ok {
		return syserror.EINVAL
	}
	if ar.Length() == 0 {
		return nil
	}

	mm.mappingMu.Lock()
	defer mm.mappingMu.Unlock()
	defer func() {
		mm.vmas.MergeRange(ar)
		mm.vmas.MergeAdjacent(ar)
	}()
	vseg := mm.vmas.LowerBoundSegment(ar.Start)
	lastEnd := ar.Start
	for {
		if !vseg.Ok() || lastEnd < vseg.Start() {
			// "EFAULT: ... there was an unmapped hole in the specified memory
			// range specified [sic] by addr and len." - mbind(2)
			return syserror.EFAULT
		}
		vseg = mm.vmas.Isolate(vseg, ar)
		vma := vseg.ValuePtr()
		vma.numaPolicy = policy
		vma.numaNodemask = nodemask
		lastEnd = vseg.End()
		if ar.End <= lastEnd {
			return nil
		}
		vseg, _ = vseg.NextNonEmpty()
	}
}

// SetDontFork implements the semantics of madvise MADV_DONTFORK.
func (mm *MemoryManager) SetDontFork(addr usermem.Addr, length uint64, dontfork bool) error {
	ar, ok := addr.ToRange(length)
	if !ok {
		return syserror.EINVAL
	}

	mm.mappingMu.Lock()
	defer mm.mappingMu.Unlock()
	defer func() {
		mm.vmas.MergeRange(ar)
		mm.vmas.MergeAdjacent(ar)
	}()

	for vseg := mm.vmas.LowerBoundSegment(ar.Start); vseg.Ok() && vseg.Start() < ar.End; vseg = vseg.NextSegment() {
		vseg = mm.vmas.Isolate(vseg, ar)
		vma := vseg.ValuePtr()
		vma.dontfork = dontfork
	}

	if mm.vmas.SpanRange(ar) != ar.Length() {
		return syserror.ENOMEM
	}
	return nil
}

// Decommit implements the semantics of Linux's madvise(MADV_DONTNEED).
func (mm *MemoryManager) Decommit(addr usermem.Addr, length uint64) error {
	ar, ok := addr.ToRange(length)
	if !ok {
		return syserror.EINVAL
	}

	mm.mappingMu.RLock()
	defer mm.mappingMu.RUnlock()
	mm.activeMu.Lock()
	defer mm.activeMu.Unlock()

	// This is invalidateLocked(invalidatePrivate=true, invalidateShared=true),
	// with the additional wrinkle that we must refuse to invalidate pmas under
	// mlocked vmas.
	var didUnmapAS bool
	pseg := mm.pmas.LowerBoundSegment(ar.Start)
	for vseg := mm.vmas.LowerBoundSegment(ar.Start); vseg.Ok() && vseg.Start() < ar.End; vseg = vseg.NextSegment() {
		vma := vseg.ValuePtr()
		if vma.mlockMode != memmap.MLockNone {
			return syserror.EINVAL
		}
		vsegAR := vseg.Range().Intersect(ar)
		// pseg should already correspond to either this vma or a later one,
		// since there can't be a pma without a corresponding vma.
		if checkInvariants {
			if pseg.Ok() && pseg.End() <= vsegAR.Start {
				panic(fmt.Sprintf("pma %v precedes vma %v", pseg.Range(), vsegAR))
			}
		}
		for pseg.Ok() && pseg.Start() < vsegAR.End {
			pseg = mm.pmas.Isolate(pseg, vsegAR)
			pma := pseg.ValuePtr()
			if !didUnmapAS {
				// Unmap all of ar, not just pseg.Range(), to minimize host
				// syscalls. AddressSpace mappings must be removed before
				// mm.decPrivateRef().
				mm.unmapASLocked(ar)
				didUnmapAS = true
			}
			if pma.private {
				mm.decPrivateRef(pseg.fileRange())
			}
			pma.file.DecRef(pseg.fileRange())
			mm.removeRSSLocked(pseg.Range())
			pseg = mm.pmas.Remove(pseg).NextSegment()
		}
	}

	// "If there are some parts of the specified address space that are not
	// mapped, the Linux version of madvise() ignores them and applies the call
	// to the rest (but returns ENOMEM from the system call, as it should)." -
	// madvise(2)
	if mm.vmas.SpanRange(ar) != ar.Length() {
		return syserror.ENOMEM
	}
	return nil
}

// MSyncOpts holds options to MSync.
type MSyncOpts struct {
	// Sync has the semantics of MS_SYNC.
	Sync bool

	// Invalidate has the semantics of MS_INVALIDATE.
	Invalidate bool
}

// MSync implements the semantics of Linux's msync().
func (mm *MemoryManager) MSync(ctx context.Context, addr usermem.Addr, length uint64, opts MSyncOpts) error {
	if addr != addr.RoundDown() {
		return syserror.EINVAL
	}
	if length == 0 {
		return nil
	}
	la, ok := usermem.Addr(length).RoundUp()
	if !ok {
		return syserror.ENOMEM
	}
	ar, ok := addr.ToRange(uint64(la))
	if !ok {
		return syserror.ENOMEM
	}

	mm.mappingMu.RLock()
	// Can't defer mm.mappingMu.RUnlock(); see below.
	vseg := mm.vmas.LowerBoundSegment(ar.Start)
	if !vseg.Ok() {
		mm.mappingMu.RUnlock()
		return syserror.ENOMEM
	}
	var unmapped bool
	lastEnd := ar.Start
	for {
		if !vseg.Ok() {
			mm.mappingMu.RUnlock()
			unmapped = true
			break
		}
		if lastEnd < vseg.Start() {
			unmapped = true
		}
		lastEnd = vseg.End()
		vma := vseg.ValuePtr()
		if opts.Invalidate && vma.mlockMode != memmap.MLockNone {
			mm.mappingMu.RUnlock()
			return syserror.EBUSY
		}
		// It's only possible to have dirtied the Mappable through a shared
		// mapping. Don't check if the mapping is writable, because mprotect
		// may have changed this, and also because Linux doesn't.
		if id := vma.id; opts.Sync && id != nil && vma.mappable != nil && !vma.private {
			// We can't call memmap.MappingIdentity.Msync while holding
			// mm.mappingMu since it may take fs locks that precede it in the
			// lock order.
			id.IncRef()
			mr := vseg.mappableRangeOf(vseg.Range().Intersect(ar))
			mm.mappingMu.RUnlock()
			err := id.Msync(ctx, mr)
			id.DecRef(ctx)
			if err != nil {
				return err
			}
			if lastEnd >= ar.End {
				break
			}
			mm.mappingMu.RLock()
			vseg = mm.vmas.LowerBoundSegment(lastEnd)
		} else {
			if lastEnd >= ar.End {
				mm.mappingMu.RUnlock()
				break
			}
			vseg = vseg.NextSegment()
		}
	}

	if unmapped {
		return syserror.ENOMEM
	}
	return nil
}

// GetSharedFutexKey is used by kernel.Task.GetSharedKey.
func (mm *MemoryManager) GetSharedFutexKey(ctx context.Context, addr usermem.Addr) (futex.Key, error) {
	ar, ok := addr.ToRange(4) // sizeof(int32).
	if !ok {
		return futex.Key{}, syserror.EFAULT
	}

	mm.mappingMu.RLock()
	defer mm.mappingMu.RUnlock()
	vseg, _, err := mm.getVMAsLocked(ctx, ar, usermem.Read, false)
	if err != nil {
		return futex.Key{}, err
	}
	vma := vseg.ValuePtr()

	if vma.private {
		return futex.Key{
			Kind:   futex.KindSharedPrivate,
			Offset: uint64(addr),
		}, nil
	}

	if vma.id != nil {
		vma.id.IncRef()
	}
	return futex.Key{
		Kind:            futex.KindSharedMappable,
		Mappable:        vma.mappable,
		MappingIdentity: vma.id,
		Offset:          vseg.mappableOffsetAt(addr),
	}, nil
}

// VirtualMemorySize returns the combined length in bytes of all mappings in
// mm.
func (mm *MemoryManager) VirtualMemorySize() uint64 {
	mm.mappingMu.RLock()
	defer mm.mappingMu.RUnlock()
	return mm.usageAS
}

// VirtualMemorySizeRange returns the combined length in bytes of all mappings
// in ar in mm.
func (mm *MemoryManager) VirtualMemorySizeRange(ar usermem.AddrRange) uint64 {
	mm.mappingMu.RLock()
	defer mm.mappingMu.RUnlock()
	return uint64(mm.vmas.SpanRange(ar))
}

// ResidentSetSize returns the value advertised as mm's RSS in bytes.
func (mm *MemoryManager) ResidentSetSize() uint64 {
	mm.activeMu.RLock()
	defer mm.activeMu.RUnlock()
	return mm.curRSS
}

// MaxResidentSetSize returns the value advertised as mm's max RSS in bytes.
func (mm *MemoryManager) MaxResidentSetSize() uint64 {
	mm.activeMu.RLock()
	defer mm.activeMu.RUnlock()
	return mm.maxRSS
}

// VirtualDataSize returns the size of private data segments in mm.
func (mm *MemoryManager) VirtualDataSize() uint64 {
	mm.mappingMu.RLock()
	defer mm.mappingMu.RUnlock()
	return mm.dataAS
}

// EnableMembarrierPrivate causes future calls to IsMembarrierPrivateEnabled to
// return true.
func (mm *MemoryManager) EnableMembarrierPrivate() {
	atomic.StoreUint32(&mm.membarrierPrivateEnabled, 1)
}

// IsMembarrierPrivateEnabled returns true if mm.EnableMembarrierPrivate() has
// previously been called.
func (mm *MemoryManager) IsMembarrierPrivateEnabled() bool {
	return atomic.LoadUint32(&mm.membarrierPrivateEnabled) != 0
}

// EnableMembarrierRSeq causes future calls to IsMembarrierRSeqEnabled to
// return true.
func (mm *MemoryManager) EnableMembarrierRSeq() {
	atomic.StoreUint32(&mm.membarrierRSeqEnabled, 1)
}

// IsMembarrierRSeqEnabled returns true if mm.EnableMembarrierRSeq() has
// previously been called.
func (mm *MemoryManager) IsMembarrierRSeqEnabled() bool {
	return atomic.LoadUint32(&mm.membarrierRSeqEnabled) != 0
}