1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
|
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package mm
import (
"fmt"
"gvisor.googlesource.com/gvisor/pkg/sentry/context"
"gvisor.googlesource.com/gvisor/pkg/sentry/memmap"
"gvisor.googlesource.com/gvisor/pkg/sentry/platform"
"gvisor.googlesource.com/gvisor/pkg/sentry/platform/safecopy"
"gvisor.googlesource.com/gvisor/pkg/sentry/safemem"
"gvisor.googlesource.com/gvisor/pkg/sentry/usage"
"gvisor.googlesource.com/gvisor/pkg/sentry/usermem"
"gvisor.googlesource.com/gvisor/pkg/syserror"
)
type pmaOpts struct {
// If breakCOW is true, pmas must not be copy-on-write.
breakCOW bool
}
// existingPMAsLocked checks that pmas exist for all addresses in ar, and
// support access of type (at, ignorePermissions). If so, it returns an
// iterator to the pma containing ar.Start. Otherwise it returns a terminal
// iterator.
//
// Preconditions: mm.activeMu must be locked. ar.Length() != 0.
func (mm *MemoryManager) existingPMAsLocked(ar usermem.AddrRange, at usermem.AccessType, ignorePermissions bool, opts pmaOpts, needInternalMappings bool) pmaIterator {
if checkInvariants {
if !ar.WellFormed() || ar.Length() <= 0 {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
}
first := mm.pmas.FindSegment(ar.Start)
pseg := first
for pseg.Ok() {
pma := pseg.ValuePtr()
perms := pma.vmaEffectivePerms
if ignorePermissions {
perms = pma.vmaMaxPerms
}
if !perms.SupersetOf(at) {
// These are the vma's permissions, so the caller will get an error
// when they try to get new pmas.
return pmaIterator{}
}
if opts.breakCOW && pma.needCOW {
return pmaIterator{}
}
if needInternalMappings && pma.internalMappings.IsEmpty() {
return pmaIterator{}
}
if ar.End <= pseg.End() {
return first
}
pseg, _ = pseg.NextNonEmpty()
}
// Ran out of pmas before reaching ar.End.
return pmaIterator{}
}
// existingVecPMAsLocked returns true if pmas exist for all addresses in ars,
// and support access of type (at, ignorePermissions).
//
// Preconditions: mm.activeMu must be locked.
func (mm *MemoryManager) existingVecPMAsLocked(ars usermem.AddrRangeSeq, at usermem.AccessType, ignorePermissions bool, opts pmaOpts, needInternalMappings bool) bool {
for ; !ars.IsEmpty(); ars = ars.Tail() {
if ar := ars.Head(); ar.Length() != 0 && !mm.existingPMAsLocked(ar, at, ignorePermissions, opts, needInternalMappings).Ok() {
return false
}
}
return true
}
// getPMAsLocked ensures that pmas exist for all addresses in ar, subject to
// opts. It returns:
//
// - An iterator to the pma containing ar.Start. If no pma contains ar.Start,
// the iterator is unspecified.
//
// - An iterator to the gap after the last pma containing an address in ar. If
// pmas exist for no addresses in ar, the iterator is to a gap that begins
// before ar.Start.
//
// - An error that is non-nil if pmas exist for only a subset of ar.
//
// Preconditions: mm.mappingMu must be locked. mm.activeMu must be locked for
// writing. ar.Length() != 0. vseg.Range().Contains(ar.Start). vmas must exist
// for all addresses in ar.
func (mm *MemoryManager) getPMAsLocked(ctx context.Context, vseg vmaIterator, ar usermem.AddrRange, opts pmaOpts) (pmaIterator, pmaGapIterator, error) {
if checkInvariants {
if !ar.WellFormed() || ar.Length() <= 0 {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
if !vseg.Ok() {
panic("terminal vma iterator")
}
if !vseg.Range().Contains(ar.Start) {
panic(fmt.Sprintf("initial vma %v does not cover start of ar %v", vseg.Range(), ar))
}
}
// Page-align ar so that all AddrRanges are aligned.
end, ok := ar.End.RoundUp()
var alignerr error
if !ok {
end = ar.End.RoundDown()
alignerr = syserror.EFAULT
}
ar = usermem.AddrRange{ar.Start.RoundDown(), end}
pstart, pend, perr := mm.ensurePMAsLocked(ctx, vseg, ar)
if pend.Start() <= ar.Start {
return pmaIterator{}, pend, perr
}
// ensurePMAsLocked may not have pstart due to iterator invalidation. We
// need it, either to return it immediately or to pass to
// breakCopyOnWriteLocked.
if !pstart.Ok() {
pstart = mm.findOrSeekPrevUpperBoundPMA(ar.Start, pend)
}
var cowerr error
if opts.breakCOW {
if pend.Start() < ar.End {
// Adjust ar to reflect missing pmas.
ar.End = pend.Start()
}
var invalidated bool
pend, invalidated, cowerr = mm.breakCopyOnWriteLocked(pstart, ar)
if pend.Start() <= ar.Start {
return pmaIterator{}, pend, cowerr
}
if invalidated {
pstart = mm.findOrSeekPrevUpperBoundPMA(ar.Start, pend)
}
}
if cowerr != nil {
return pstart, pend, cowerr
}
if perr != nil {
return pstart, pend, perr
}
return pstart, pend, alignerr
}
// getVecPMAsLocked ensures that pmas exist for all addresses in ars. It
// returns the subset of ars for which pmas exist. If this is not equal to ars,
// it returns a non-nil error explaining why.
//
// Preconditions: mm.mappingMu must be locked. mm.activeMu must be locked for
// writing. vmas must exist for all addresses in ars.
func (mm *MemoryManager) getVecPMAsLocked(ctx context.Context, ars usermem.AddrRangeSeq, opts pmaOpts) (usermem.AddrRangeSeq, error) {
for arsit := ars; !arsit.IsEmpty(); arsit = arsit.Tail() {
ar := arsit.Head()
if ar.Length() == 0 {
continue
}
// Page-align ar so that all AddrRanges are aligned.
end, ok := ar.End.RoundUp()
var alignerr error
if !ok {
end = ar.End.RoundDown()
alignerr = syserror.EFAULT
}
ar = usermem.AddrRange{ar.Start.RoundDown(), end}
pstart, pend, perr := mm.ensurePMAsLocked(ctx, mm.vmas.FindSegment(ar.Start), ar)
if pend.Start() <= ar.Start {
return truncatedAddrRangeSeq(ars, arsit, pend.Start()), perr
}
var cowerr error
if opts.breakCOW {
if !pstart.Ok() {
pstart = mm.findOrSeekPrevUpperBoundPMA(ar.Start, pend)
}
if pend.Start() < ar.End {
// Adjust ar to reflect missing pmas.
ar.End = pend.Start()
}
pend, _, cowerr = mm.breakCopyOnWriteLocked(pstart, ar)
}
if cowerr != nil {
return truncatedAddrRangeSeq(ars, arsit, pend.Start()), cowerr
}
if perr != nil {
return truncatedAddrRangeSeq(ars, arsit, pend.Start()), perr
}
if alignerr != nil {
return truncatedAddrRangeSeq(ars, arsit, pend.Start()), alignerr
}
}
return ars, nil
}
// ensurePMAsLocked ensures that pmas exist for all addresses in ar. It returns:
//
// - An iterator to the pma containing ar.Start, on a best-effort basis (that
// is, the returned iterator may be terminal, even if such a pma exists).
// Returning this iterator on a best-effort basis allows callers that require
// it to use it when it's cheaply available, while also avoiding the overhead
// of retrieving it when it's not.
//
// - An iterator to the gap after the last pma containing an address in ar. If
// pmas exist for no addresses in ar, the iterator is to a gap that begins
// before ar.Start.
//
// - An error that is non-nil if pmas exist for only a subset of ar.
//
// Preconditions: mm.mappingMu must be locked. mm.activeMu must be locked for
// writing. ar.Length() != 0. ar must be page-aligned.
// vseg.Range().Contains(ar.Start). vmas must exist for all addresses in ar.
func (mm *MemoryManager) ensurePMAsLocked(ctx context.Context, vseg vmaIterator, ar usermem.AddrRange) (pmaIterator, pmaGapIterator, error) {
if checkInvariants {
if !ar.WellFormed() || ar.Length() <= 0 || !ar.IsPageAligned() {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
if !vseg.Range().Contains(ar.Start) {
panic(fmt.Sprintf("initial vma %v does not cover start of ar %v", vseg.Range(), ar))
}
}
pstart, pgap := mm.pmas.Find(ar.Start)
if pstart.Ok() {
pgap = pstart.NextGap()
}
for pgap.Start() < ar.End {
if pgap.Range().Length() == 0 {
pgap = pgap.NextGap()
continue
}
// A single pgap might be spanned by multiple vmas. Insert pmas to
// cover the first (vma, pgap) pair.
pgapAR := pgap.Range().Intersect(ar)
vseg = vseg.seekNextLowerBound(pgapAR.Start)
if checkInvariants {
if !vseg.Ok() {
panic(fmt.Sprintf("no vma after %#x", pgapAR.Start))
}
if pgapAR.Start < vseg.Start() {
panic(fmt.Sprintf("no vma in [%#x, %#x)", pgapAR.Start, vseg.Start()))
}
}
var err error
pgap, err = mm.insertPMAsLocked(ctx, vseg, pgap, ar)
// insertPMAsLocked most likely invalidated iterators, so pstart is now
// unknown.
pstart = pmaIterator{}
if err != nil {
return pstart, pgap, err
}
}
return pstart, pgap, nil
}
const (
// When memory is allocated for a private pma, align the allocated address
// range to a privateAllocUnit boundary when possible. Larger values of
// privateAllocUnit may reduce page faults by allowing fewer, larger pmas
// to be mapped, but may result in larger amounts of wasted memory in the
// presence of fragmentation. privateAllocUnit must be a power-of-2
// multiple of usermem.PageSize.
privateAllocUnit = usermem.HugePageSize
privateAllocMask = privateAllocUnit - 1
)
func privateAligned(ar usermem.AddrRange) usermem.AddrRange {
aligned := usermem.AddrRange{ar.Start &^ privateAllocMask, ar.End}
if end := (ar.End + privateAllocMask) &^ privateAllocMask; end >= ar.End {
aligned.End = end
}
if checkInvariants {
if !aligned.IsSupersetOf(ar) {
panic(fmt.Sprintf("aligned AddrRange %#v is not a superset of ar %#v", aligned, ar))
}
}
return aligned
}
// insertPMAsLocked inserts pmas into pgap corresponding to the vma iterated by
// vseg, spanning at least ar. It returns:
//
// - An iterator to the gap after the last pma containing an address in ar. If
// pmas exist for no addresses in ar, the iterator is to a gap that begins
// before ar.Start.
//
// - An error that is non-nil if pmas exist for only a subset of ar.
//
// Preconditions: mm.mappingMu must be locked. mm.activeMu must be locked for
// writing. vseg.Range().Intersect(pgap.Range()).Intersect(ar).Length() != 0.
// ar must be page-aligned.
func (mm *MemoryManager) insertPMAsLocked(ctx context.Context, vseg vmaIterator, pgap pmaGapIterator, ar usermem.AddrRange) (pmaGapIterator, error) {
optAR := vseg.Range().Intersect(pgap.Range())
if checkInvariants {
if optAR.Length() <= 0 {
panic(fmt.Sprintf("vseg %v and pgap %v do not overlap", vseg, pgap))
}
if !ar.WellFormed() || ar.Length() <= 0 || !ar.IsPageAligned() {
panic(fmt.Sprintf("invalid ar %v", ar))
}
}
vma := vseg.ValuePtr()
// Private anonymous mappings get pmas by allocating.
if vma.mappable == nil {
// Limit the range we allocate to ar, aligned to privateAllocUnit.
maskAR := privateAligned(ar)
allocAR := optAR.Intersect(maskAR)
mf := mm.mfp.MemoryFile()
fr, err := mf.Allocate(uint64(allocAR.Length()), usage.Anonymous)
if err != nil {
return pgap, err
}
mm.incPrivateRef(fr)
if checkInvariants {
if !fr.WellFormed() || fr.Length() != uint64(allocAR.Length()) {
panic(fmt.Sprintf("Allocate(%v) returned invalid FileRange %v", allocAR.Length(), fr))
}
}
mm.addRSSLocked(allocAR)
mf.IncRef(fr)
return mm.pmas.Insert(pgap, allocAR, pma{
file: mf,
off: fr.Start,
vmaEffectivePerms: vma.effectivePerms,
vmaMaxPerms: vma.maxPerms,
private: true,
// Since we just allocated this memory and have the only reference,
// the new pma does not need copy-on-write.
}).NextGap(), nil
}
// Other mappings get pmas by translating. Limit the required range
// to ar.
optMR := vseg.mappableRangeOf(optAR)
reqAR := optAR.Intersect(ar)
reqMR := vseg.mappableRangeOf(reqAR)
perms := vma.maxPerms
if vma.private {
perms.Write = false
}
ts, err := vma.mappable.Translate(ctx, reqMR, optMR, perms)
if checkInvariants {
if err := memmap.CheckTranslateResult(reqMR, optMR, ts, err); err != nil {
panic(fmt.Sprintf("Mappable(%T).Translate(%v, %v): %v", vma.mappable, reqMR, optMR, err))
}
}
// Install a pma for each Translation.
for _, t := range ts {
// This is valid because memmap.Mappable.Translate is required to
// return Translations in increasing Translation.Source order.
addrRange := vseg.addrRangeOf(t.Source)
mm.addRSSLocked(addrRange)
pseg := mm.pmas.Insert(pgap, addrRange, pma{
file: t.File,
off: t.Offset,
vmaEffectivePerms: vma.effectivePerms,
vmaMaxPerms: vma.maxPerms,
needCOW: vma.private,
})
// The new pseg may have been merged with existing segments, only take a
// ref on the inserted range.
t.File.IncRef(pseg.fileRangeOf(addrRange))
pgap = pseg.NextGap()
}
// Even if Translate returned an error, if we got to ar.End,
// insertPMAsLocked succeeded.
if ar.End <= pgap.Start() {
return pgap, nil
}
return pgap, err
}
// breakCopyOnWriteLocked ensures that pmas in ar are not copy-on-write. It
// returns:
//
// - An iterator to the gap after the last non-COW pma containing an address in
// ar. If non-COW pmas exist for no addresses in ar, the iterator is to a gap
// that begins before ar.Start.
//
// - A boolean that is true if iterators into mm.pmas may have been
// invalidated.
//
// - An error that is non-nil if non-COW pmas exist for only a subset of ar.
//
// Preconditions: mm.activeMu must be locked for writing. ar.Length() != 0. ar
// must be page-aligned. pseg.Range().Contains(ar.Start). pmas must exist for
// all addresses in ar.
func (mm *MemoryManager) breakCopyOnWriteLocked(pseg pmaIterator, ar usermem.AddrRange) (pmaGapIterator, bool, error) {
if checkInvariants {
if !ar.WellFormed() || ar.Length() <= 0 || !ar.IsPageAligned() {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
if !pseg.Range().Contains(ar.Start) {
panic(fmt.Sprintf("initial pma %v does not cover start of ar %v", pseg.Range(), ar))
}
}
// Limit the range we copy to ar, aligned to privateAllocUnit.
maskAR := privateAligned(ar)
var invalidatedIterators, didUnmapAS bool
mf := mm.mfp.MemoryFile()
for {
if mm.isPMACopyOnWriteLocked(pseg) {
// Determine the range to copy.
copyAR := pseg.Range().Intersect(maskAR)
// Get internal mappings from the pma to copy from.
if err := pseg.getInternalMappingsLocked(); err != nil {
return pseg.PrevGap(), invalidatedIterators, err
}
// Copy contents.
fr, err := mf.AllocateAndFill(uint64(copyAR.Length()), usage.Anonymous, &safemem.BlockSeqReader{mm.internalMappingsLocked(pseg, copyAR)})
if _, ok := err.(safecopy.BusError); ok {
// If we got SIGBUS during the copy, deliver SIGBUS to
// userspace (instead of SIGSEGV) if we're breaking
// copy-on-write due to application page fault.
err = &memmap.BusError{err}
}
if fr.Length() == 0 {
return pseg.PrevGap(), invalidatedIterators, err
}
mm.incPrivateRef(fr)
mf.IncRef(fr)
// Unmap all of maskAR, not just copyAR, to minimize host syscalls.
// AddressSpace mappings must be removed before mm.decPrivateRef().
if !didUnmapAS {
mm.unmapASLocked(maskAR)
didUnmapAS = true
}
// Replace the pma with a copy in the part of the address range
// where copying was successful.
copyAR.End = copyAR.Start + usermem.Addr(fr.Length())
if copyAR != pseg.Range() {
pseg = mm.pmas.Isolate(pseg, copyAR)
invalidatedIterators = true
}
pma := pseg.ValuePtr()
if pma.private {
mm.decPrivateRef(pseg.fileRange())
}
pma.file.DecRef(pseg.fileRange())
pma.file = mf
pma.off = fr.Start
pma.private = true
pma.needCOW = false
pma.internalMappings = safemem.BlockSeq{}
// Try to merge pma with its neighbors.
if prev := pseg.PrevSegment(); prev.Ok() {
if merged := mm.pmas.Merge(prev, pseg); merged.Ok() {
pseg = merged
invalidatedIterators = true
}
}
if next := pseg.NextSegment(); next.Ok() {
if merged := mm.pmas.Merge(pseg, next); merged.Ok() {
pseg = merged
invalidatedIterators = true
}
}
// If an error occurred after ar.End, breakCopyOnWriteLocked still
// did its job, so discard the error.
if err != nil && pseg.End() < ar.End {
return pseg.NextGap(), invalidatedIterators, err
}
}
// This checks against ar.End, not maskAR.End, so we will never break
// COW on a pma that does not intersect ar.
if ar.End <= pseg.End() {
return pseg.NextGap(), invalidatedIterators, nil
}
pseg = pseg.NextSegment()
}
}
// Preconditions: mm.activeMu must be locked for writing.
func (mm *MemoryManager) isPMACopyOnWriteLocked(pseg pmaIterator) bool {
pma := pseg.ValuePtr()
if !pma.needCOW {
return false
}
if !pma.private {
return true
}
// If we have the only reference on private memory to be copied, just take
// ownership of it instead of copying. If we do hold the only reference,
// additional references can only be taken by mm.Fork(), which is excluded
// by mm.activeMu, so this isn't racy.
mm.privateRefs.mu.Lock()
defer mm.privateRefs.mu.Unlock()
fr := pseg.fileRange()
// This check relies on mm.privateRefs.refs being kept fully merged.
rseg := mm.privateRefs.refs.FindSegment(fr.Start)
if rseg.Ok() && rseg.Value() == 1 && fr.End <= rseg.End() {
pma.needCOW = false
return false
}
return true
}
// Invalidate implements memmap.MappingSpace.Invalidate.
func (mm *MemoryManager) Invalidate(ar usermem.AddrRange, opts memmap.InvalidateOpts) {
if checkInvariants {
if !ar.WellFormed() || ar.Length() <= 0 || !ar.IsPageAligned() {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
}
mm.activeMu.Lock()
defer mm.activeMu.Unlock()
if mm.captureInvalidations {
mm.capturedInvalidations = append(mm.capturedInvalidations, invalidateArgs{ar, opts})
return
}
mm.invalidateLocked(ar, opts.InvalidatePrivate, true)
}
// invalidateLocked removes pmas and AddressSpace mappings of those pmas for
// addresses in ar.
//
// Preconditions: mm.activeMu must be locked for writing. ar.Length() != 0. ar
// must be page-aligned.
func (mm *MemoryManager) invalidateLocked(ar usermem.AddrRange, invalidatePrivate, invalidateShared bool) {
if checkInvariants {
if !ar.WellFormed() || ar.Length() <= 0 || !ar.IsPageAligned() {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
}
var didUnmapAS bool
pseg := mm.pmas.LowerBoundSegment(ar.Start)
for pseg.Ok() && pseg.Start() < ar.End {
pma := pseg.ValuePtr()
if (invalidatePrivate && pma.private) || (invalidateShared && !pma.private) {
pseg = mm.pmas.Isolate(pseg, ar)
pma = pseg.ValuePtr()
if !didUnmapAS {
// Unmap all of ar, not just pseg.Range(), to minimize host
// syscalls. AddressSpace mappings must be removed before
// mm.decPrivateRef().
mm.unmapASLocked(ar)
didUnmapAS = true
}
if pma.private {
mm.decPrivateRef(pseg.fileRange())
}
mm.removeRSSLocked(pseg.Range())
pma.file.DecRef(pseg.fileRange())
pseg = mm.pmas.Remove(pseg).NextSegment()
} else {
pseg = pseg.NextSegment()
}
}
}
// Pin returns the platform.File ranges currently mapped by addresses in ar in
// mm, acquiring a reference on the returned ranges which the caller must
// release by calling Unpin. If not all addresses are mapped, Pin returns a
// non-nil error. Note that Pin may return both a non-empty slice of
// PinnedRanges and a non-nil error.
//
// Pin does not prevent mapped ranges from changing, making it unsuitable for
// most I/O. It should only be used in contexts that would use get_user_pages()
// in the Linux kernel.
//
// Preconditions: ar.Length() != 0. ar must be page-aligned.
func (mm *MemoryManager) Pin(ctx context.Context, ar usermem.AddrRange, at usermem.AccessType, ignorePermissions bool) ([]PinnedRange, error) {
if checkInvariants {
if !ar.WellFormed() || ar.Length() <= 0 || !ar.IsPageAligned() {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
}
// Ensure that we have usable vmas.
mm.mappingMu.RLock()
vseg, vend, verr := mm.getVMAsLocked(ctx, ar, at, ignorePermissions)
if vendaddr := vend.Start(); vendaddr < ar.End {
if vendaddr <= ar.Start {
mm.mappingMu.RUnlock()
return nil, verr
}
ar.End = vendaddr
}
// Ensure that we have usable pmas.
mm.activeMu.Lock()
pseg, pend, perr := mm.getPMAsLocked(ctx, vseg, ar, pmaOpts{
breakCOW: at.Write,
})
mm.mappingMu.RUnlock()
if pendaddr := pend.Start(); pendaddr < ar.End {
if pendaddr <= ar.Start {
mm.activeMu.Unlock()
return nil, perr
}
ar.End = pendaddr
}
// Gather pmas.
var prs []PinnedRange
for pseg.Ok() && pseg.Start() < ar.End {
psar := pseg.Range().Intersect(ar)
f := pseg.ValuePtr().file
fr := pseg.fileRangeOf(psar)
f.IncRef(fr)
prs = append(prs, PinnedRange{
Source: psar,
File: f,
Offset: fr.Start,
})
pseg = pseg.NextSegment()
}
mm.activeMu.Unlock()
// Return the first error in order of progress through ar.
if perr != nil {
return prs, perr
}
return prs, verr
}
// PinnedRanges are returned by MemoryManager.Pin.
type PinnedRange struct {
// Source is the corresponding range of addresses.
Source usermem.AddrRange
// File is the mapped file.
File platform.File
// Offset is the offset into File at which this PinnedRange begins.
Offset uint64
}
// FileRange returns the platform.File offsets mapped by pr.
func (pr PinnedRange) FileRange() platform.FileRange {
return platform.FileRange{pr.Offset, pr.Offset + uint64(pr.Source.Length())}
}
// Unpin releases the reference held by prs.
func Unpin(prs []PinnedRange) {
for i := range prs {
prs[i].File.DecRef(prs[i].FileRange())
}
}
// movePMAsLocked moves all pmas in oldAR to newAR.
//
// Preconditions: mm.activeMu must be locked for writing. oldAR.Length() != 0.
// oldAR.Length() <= newAR.Length(). !oldAR.Overlaps(newAR).
// mm.pmas.IsEmptyRange(newAR). oldAR and newAR must be page-aligned.
func (mm *MemoryManager) movePMAsLocked(oldAR, newAR usermem.AddrRange) {
if checkInvariants {
if !oldAR.WellFormed() || oldAR.Length() <= 0 || !oldAR.IsPageAligned() {
panic(fmt.Sprintf("invalid oldAR: %v", oldAR))
}
if !newAR.WellFormed() || newAR.Length() <= 0 || !newAR.IsPageAligned() {
panic(fmt.Sprintf("invalid newAR: %v", newAR))
}
if oldAR.Length() > newAR.Length() {
panic(fmt.Sprintf("old address range %v may contain pmas that will not fit in new address range %v", oldAR, newAR))
}
if oldAR.Overlaps(newAR) {
panic(fmt.Sprintf("old and new address ranges overlap: %v, %v", oldAR, newAR))
}
// mm.pmas.IsEmptyRange is checked by mm.pmas.Insert.
}
type movedPMA struct {
oldAR usermem.AddrRange
pma pma
}
var movedPMAs []movedPMA
pseg := mm.pmas.LowerBoundSegment(oldAR.Start)
for pseg.Ok() && pseg.Start() < oldAR.End {
pseg = mm.pmas.Isolate(pseg, oldAR)
movedPMAs = append(movedPMAs, movedPMA{
oldAR: pseg.Range(),
pma: pseg.Value(),
})
pseg = mm.pmas.Remove(pseg).NextSegment()
// No RSS change is needed since we're re-inserting the same pmas
// below.
}
off := newAR.Start - oldAR.Start
pgap := mm.pmas.FindGap(newAR.Start)
for i := range movedPMAs {
mpma := &movedPMAs[i]
pmaNewAR := usermem.AddrRange{mpma.oldAR.Start + off, mpma.oldAR.End + off}
pgap = mm.pmas.Insert(pgap, pmaNewAR, mpma.pma).NextGap()
}
mm.unmapASLocked(oldAR)
}
// getPMAInternalMappingsLocked ensures that pmas for all addresses in ar have
// cached internal mappings. It returns:
//
// - An iterator to the gap after the last pma with internal mappings
// containing an address in ar. If internal mappings exist for no addresses in
// ar, the iterator is to a gap that begins before ar.Start.
//
// - An error that is non-nil if internal mappings exist for only a subset of
// ar.
//
// Preconditions: mm.activeMu must be locked for writing.
// pseg.Range().Contains(ar.Start). pmas must exist for all addresses in ar.
// ar.Length() != 0.
//
// Postconditions: getPMAInternalMappingsLocked does not invalidate iterators
// into mm.pmas.
func (mm *MemoryManager) getPMAInternalMappingsLocked(pseg pmaIterator, ar usermem.AddrRange) (pmaGapIterator, error) {
if checkInvariants {
if !ar.WellFormed() || ar.Length() <= 0 {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
if !pseg.Range().Contains(ar.Start) {
panic(fmt.Sprintf("initial pma %v does not cover start of ar %v", pseg.Range(), ar))
}
}
for {
if err := pseg.getInternalMappingsLocked(); err != nil {
return pseg.PrevGap(), err
}
if ar.End <= pseg.End() {
return pseg.NextGap(), nil
}
pseg, _ = pseg.NextNonEmpty()
}
}
// getVecPMAInternalMappingsLocked ensures that pmas for all addresses in ars
// have cached internal mappings. It returns the subset of ars for which
// internal mappings exist. If this is not equal to ars, it returns a non-nil
// error explaining why.
//
// Preconditions: mm.activeMu must be locked for writing. pmas must exist for
// all addresses in ar.
//
// Postconditions: getVecPMAInternalMappingsLocked does not invalidate iterators
// into mm.pmas.
func (mm *MemoryManager) getVecPMAInternalMappingsLocked(ars usermem.AddrRangeSeq) (usermem.AddrRangeSeq, error) {
for arsit := ars; !arsit.IsEmpty(); arsit = arsit.Tail() {
ar := arsit.Head()
if ar.Length() == 0 {
continue
}
if pend, err := mm.getPMAInternalMappingsLocked(mm.pmas.FindSegment(ar.Start), ar); err != nil {
return truncatedAddrRangeSeq(ars, arsit, pend.Start()), err
}
}
return ars, nil
}
// internalMappingsLocked returns internal mappings for addresses in ar.
//
// Preconditions: mm.activeMu must be locked. Internal mappings must have been
// previously established for all addresses in ar. ar.Length() != 0.
// pseg.Range().Contains(ar.Start).
func (mm *MemoryManager) internalMappingsLocked(pseg pmaIterator, ar usermem.AddrRange) safemem.BlockSeq {
if checkInvariants {
if !ar.WellFormed() || ar.Length() <= 0 {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
if !pseg.Range().Contains(ar.Start) {
panic(fmt.Sprintf("initial pma %v does not cover start of ar %v", pseg.Range(), ar))
}
}
if ar.End <= pseg.End() {
// Since only one pma is involved, we can use pma.internalMappings
// directly, avoiding a slice allocation.
offset := uint64(ar.Start - pseg.Start())
return pseg.ValuePtr().internalMappings.DropFirst64(offset).TakeFirst64(uint64(ar.Length()))
}
var ims []safemem.Block
for {
pr := pseg.Range().Intersect(ar)
for pims := pseg.ValuePtr().internalMappings.DropFirst64(uint64(pr.Start - pseg.Start())).TakeFirst64(uint64(pr.Length())); !pims.IsEmpty(); pims = pims.Tail() {
ims = append(ims, pims.Head())
}
if ar.End <= pseg.End() {
break
}
pseg = pseg.NextSegment()
}
return safemem.BlockSeqFromSlice(ims)
}
// vecInternalMappingsLocked returns internal mappings for addresses in ars.
//
// Preconditions: mm.activeMu must be locked. Internal mappings must have been
// previously established for all addresses in ars.
func (mm *MemoryManager) vecInternalMappingsLocked(ars usermem.AddrRangeSeq) safemem.BlockSeq {
var ims []safemem.Block
for ; !ars.IsEmpty(); ars = ars.Tail() {
ar := ars.Head()
if ar.Length() == 0 {
continue
}
for pims := mm.internalMappingsLocked(mm.pmas.FindSegment(ar.Start), ar); !pims.IsEmpty(); pims = pims.Tail() {
ims = append(ims, pims.Head())
}
}
return safemem.BlockSeqFromSlice(ims)
}
// incPrivateRef acquires a reference on private pages in fr.
func (mm *MemoryManager) incPrivateRef(fr platform.FileRange) {
mm.privateRefs.mu.Lock()
defer mm.privateRefs.mu.Unlock()
refSet := &mm.privateRefs.refs
seg, gap := refSet.Find(fr.Start)
for {
switch {
case seg.Ok() && seg.Start() < fr.End:
seg = refSet.Isolate(seg, fr)
seg.SetValue(seg.Value() + 1)
seg, gap = seg.NextNonEmpty()
case gap.Ok() && gap.Start() < fr.End:
seg, gap = refSet.InsertWithoutMerging(gap, gap.Range().Intersect(fr), 1).NextNonEmpty()
default:
refSet.MergeAdjacent(fr)
return
}
}
}
// decPrivateRef releases a reference on private pages in fr.
func (mm *MemoryManager) decPrivateRef(fr platform.FileRange) {
var freed []platform.FileRange
mm.privateRefs.mu.Lock()
refSet := &mm.privateRefs.refs
seg := refSet.LowerBoundSegment(fr.Start)
for seg.Ok() && seg.Start() < fr.End {
seg = refSet.Isolate(seg, fr)
if old := seg.Value(); old == 1 {
freed = append(freed, seg.Range())
seg = refSet.Remove(seg).NextSegment()
} else {
seg.SetValue(old - 1)
seg = seg.NextSegment()
}
}
refSet.MergeAdjacent(fr)
mm.privateRefs.mu.Unlock()
mf := mm.mfp.MemoryFile()
for _, fr := range freed {
mf.DecRef(fr)
}
}
// addRSSLocked updates the current and maximum resident set size of a
// MemoryManager to reflect the insertion of a pma at ar.
//
// Preconditions: mm.activeMu must be locked for writing.
func (mm *MemoryManager) addRSSLocked(ar usermem.AddrRange) {
mm.curRSS += uint64(ar.Length())
if mm.curRSS > mm.maxRSS {
mm.maxRSS = mm.curRSS
}
}
// removeRSSLocked updates the current resident set size of a MemoryManager to
// reflect the removal of a pma at ar.
//
// Preconditions: mm.activeMu must be locked for writing.
func (mm *MemoryManager) removeRSSLocked(ar usermem.AddrRange) {
mm.curRSS -= uint64(ar.Length())
}
// pmaSetFunctions implements segment.Functions for pmaSet.
type pmaSetFunctions struct{}
func (pmaSetFunctions) MinKey() usermem.Addr {
return 0
}
func (pmaSetFunctions) MaxKey() usermem.Addr {
return ^usermem.Addr(0)
}
func (pmaSetFunctions) ClearValue(pma *pma) {
pma.file = nil
pma.internalMappings = safemem.BlockSeq{}
}
func (pmaSetFunctions) Merge(ar1 usermem.AddrRange, pma1 pma, ar2 usermem.AddrRange, pma2 pma) (pma, bool) {
if pma1.file != pma2.file ||
pma1.off+uint64(ar1.Length()) != pma2.off ||
pma1.vmaEffectivePerms != pma2.vmaEffectivePerms ||
pma1.vmaMaxPerms != pma2.vmaMaxPerms ||
pma1.needCOW != pma2.needCOW ||
pma1.private != pma2.private {
return pma{}, false
}
// Discard internal mappings instead of trying to merge them, since merging
// them requires an allocation and getting them again from the
// platform.File might not.
pma1.internalMappings = safemem.BlockSeq{}
return pma1, true
}
func (pmaSetFunctions) Split(ar usermem.AddrRange, p pma, split usermem.Addr) (pma, pma) {
newlen1 := uint64(split - ar.Start)
p2 := p
p2.off += newlen1
if !p.internalMappings.IsEmpty() {
p.internalMappings = p.internalMappings.TakeFirst64(newlen1)
p2.internalMappings = p2.internalMappings.DropFirst64(newlen1)
}
return p, p2
}
// findOrSeekPrevUpperBoundPMA returns mm.pmas.UpperBoundSegment(addr), but may do
// so by scanning linearly backward from pgap.
//
// Preconditions: mm.activeMu must be locked. addr <= pgap.Start().
func (mm *MemoryManager) findOrSeekPrevUpperBoundPMA(addr usermem.Addr, pgap pmaGapIterator) pmaIterator {
if checkInvariants {
if !pgap.Ok() {
panic("terminal pma iterator")
}
if addr > pgap.Start() {
panic(fmt.Sprintf("can't seek backward to %#x from %#x", addr, pgap.Start()))
}
}
// Optimistically check if pgap.PrevSegment() is the PMA we're looking for,
// which is the case if findOrSeekPrevUpperBoundPMA is called to find the
// start of a range containing only a single PMA.
if pseg := pgap.PrevSegment(); pseg.Start() <= addr {
return pseg
}
return mm.pmas.UpperBoundSegment(addr)
}
// getInternalMappingsLocked ensures that pseg.ValuePtr().internalMappings is
// non-empty.
//
// Preconditions: mm.activeMu must be locked for writing.
func (pseg pmaIterator) getInternalMappingsLocked() error {
pma := pseg.ValuePtr()
if pma.internalMappings.IsEmpty() {
// Internal mappings are used for ignorePermissions accesses,
// so we need to use vma.maxPerms instead of
// vma.effectivePerms. However, we will never execute
// application code through an internal mapping, and we don't
// actually need a writable mapping if copy-on-write is in
// effect. (But get a writable mapping anyway if the pma is
// private, so that if breakCopyOnWriteLocked =>
// isPMACopyOnWriteLocked takes ownership of the pma instead of
// copying, it doesn't need to get a new mapping.)
perms := pma.vmaMaxPerms
perms.Execute = false
if pma.needCOW && !pma.private {
perms.Write = false
}
ims, err := pma.file.MapInternal(pseg.fileRange(), perms)
if err != nil {
return err
}
pma.internalMappings = ims
}
return nil
}
func (pseg pmaIterator) fileRange() platform.FileRange {
return pseg.fileRangeOf(pseg.Range())
}
// Preconditions: pseg.Range().IsSupersetOf(ar). ar.Length != 0.
func (pseg pmaIterator) fileRangeOf(ar usermem.AddrRange) platform.FileRange {
if checkInvariants {
if !pseg.Ok() {
panic("terminal pma iterator")
}
if !ar.WellFormed() || ar.Length() <= 0 {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
if !pseg.Range().IsSupersetOf(ar) {
panic(fmt.Sprintf("ar %v out of bounds %v", ar, pseg.Range()))
}
}
pma := pseg.ValuePtr()
pstart := pseg.Start()
return platform.FileRange{pma.off + uint64(ar.Start-pstart), pma.off + uint64(ar.End-pstart)}
}
|