1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package mm provides a memory management subsystem. See README.md for a
// detailed overview.
//
// Lock order:
//
// fs locks, except for memmap.Mappable locks
// mm.MemoryManager.metadataMu
// mm.MemoryManager.mappingMu
// Locks taken by memmap.Mappable methods other than Translate
// mm.MemoryManager.activeMu
// Locks taken by memmap.Mappable.Translate
// mm.privateRefs.mu
// platform.AddressSpace locks
// platform.File locks
// mm.aioManager.mu
// mm.AIOContext.mu
//
// Only mm.MemoryManager.Fork is permitted to lock mm.MemoryManager.activeMu in
// multiple mm.MemoryManagers, as it does so in a well-defined order (forked
// child first).
package mm
import (
"sync"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/fs"
"gvisor.dev/gvisor/pkg/sentry/memmap"
"gvisor.dev/gvisor/pkg/sentry/pgalloc"
"gvisor.dev/gvisor/pkg/sentry/platform"
"gvisor.dev/gvisor/pkg/sentry/safemem"
"gvisor.dev/gvisor/pkg/sentry/usermem"
"gvisor.dev/gvisor/pkg/syncutil"
)
// MemoryManager implements a virtual address space.
//
// +stateify savable
type MemoryManager struct {
// p and mfp are immutable.
p platform.Platform
mfp pgalloc.MemoryFileProvider
// haveASIO is the cached result of p.SupportsAddressSpaceIO(). Aside from
// eliminating an indirect call in the hot I/O path, this makes
// MemoryManager.asioEnabled() a leaf function, allowing it to be inlined.
//
// haveASIO is immutable.
haveASIO bool `state:"nosave"`
// layout is the memory layout.
//
// layout is set by the binary loader before the MemoryManager can be used.
layout arch.MmapLayout
// privateRefs stores reference counts for private memory (memory whose
// ownership is shared by one or more pmas instead of being owned by a
// memmap.Mappable).
//
// privateRefs is immutable.
privateRefs *privateRefs
// users is the number of dependencies on the mappings in the MemoryManager.
// When the number of references in users reaches zero, all mappings are
// unmapped.
//
// users is accessed using atomic memory operations.
users int32
// mappingMu is analogous to Linux's struct mm_struct::mmap_sem.
mappingMu syncutil.DowngradableRWMutex `state:"nosave"`
// vmas stores virtual memory areas. Since vmas are stored by value,
// clients should usually use vmaIterator.ValuePtr() instead of
// vmaIterator.Value() to get a pointer to the vma rather than a copy.
//
// Invariants: vmas are always page-aligned.
//
// vmas is protected by mappingMu.
vmas vmaSet
// brk is the mm's brk, which is manipulated using the brk(2) system call.
// The brk is initially set up by the loader which maps an executable
// binary into the mm.
//
// brk is protected by mappingMu.
brk usermem.AddrRange
// usageAS is vmas.Span(), cached to accelerate RLIMIT_AS checks.
//
// usageAS is protected by mappingMu.
usageAS uint64
// lockedAS is the combined size in bytes of all vmas with vma.mlockMode !=
// memmap.MLockNone.
//
// lockedAS is protected by mappingMu.
lockedAS uint64
// dataAS is the size of private data segments, like mm_struct->data_vm.
// It means the vma which is private, writable, not stack.
//
// dataAS is protected by mappingMu.
dataAS uint64
// New VMAs created by MMap use whichever of memmap.MMapOpts.MLockMode or
// defMLockMode is greater.
//
// defMLockMode is protected by mappingMu.
defMLockMode memmap.MLockMode
// activeMu is loosely analogous to Linux's struct
// mm_struct::page_table_lock.
activeMu syncutil.DowngradableRWMutex `state:"nosave"`
// pmas stores platform mapping areas used to implement vmas. Since pmas
// are stored by value, clients should usually use pmaIterator.ValuePtr()
// instead of pmaIterator.Value() to get a pointer to the pma rather than
// a copy.
//
// Inserting or removing segments from pmas should happen along with a
// call to mm.insertRSS or mm.removeRSS.
//
// Invariants: pmas are always page-aligned. If a pma exists for a given
// address, a vma must also exist for that address.
//
// pmas is protected by activeMu.
pmas pmaSet
// curRSS is pmas.Span(), cached to accelerate updates to maxRSS. It is
// reported as the MemoryManager's RSS.
//
// maxRSS should be modified only via insertRSS and removeRSS, not
// directly.
//
// maxRSS is protected by activeMu.
curRSS uint64
// maxRSS is the maximum resident set size in bytes of a MemoryManager.
// It is tracked as the application adds and removes mappings to pmas.
//
// maxRSS should be modified only via insertRSS, not directly.
//
// maxRSS is protected by activeMu.
maxRSS uint64
// as is the platform.AddressSpace that pmas are mapped into. active is the
// number of contexts that require as to be non-nil; if active == 0, as may
// be nil.
//
// as is protected by activeMu. active is manipulated with atomic memory
// operations; transitions to and from zero are additionally protected by
// activeMu. (This is because such transitions may need to be atomic with
// changes to as.)
as platform.AddressSpace `state:"nosave"`
active int32 `state:"zerovalue"`
// unmapAllOnActivate indicates that the next Activate call should activate
// an empty AddressSpace.
//
// This is used to ensure that an AddressSpace cached in
// NewAddressSpace is not used after some change in the MemoryManager
// or VMAs has made that AddressSpace stale.
//
// unmapAllOnActivate is protected by activeMu. It must only be set when
// there is no active or cached AddressSpace. If as != nil, then
// invalidations should be propagated immediately.
unmapAllOnActivate bool `state:"nosave"`
// If captureInvalidations is true, calls to MM.Invalidate() are recorded
// in capturedInvalidations rather than being applied immediately to pmas.
// This is to avoid a race condition in MM.Fork(); see that function for
// details.
//
// Both captureInvalidations and capturedInvalidations are protected by
// activeMu. Neither need to be saved since captureInvalidations is only
// enabled during MM.Fork(), during which saving can't occur.
captureInvalidations bool `state:"zerovalue"`
capturedInvalidations []invalidateArgs `state:"nosave"`
metadataMu sync.Mutex `state:"nosave"`
// argv is the application argv. This is set up by the loader and may be
// modified by prctl(PR_SET_MM_ARG_START/PR_SET_MM_ARG_END). No
// requirements apply to argv; we do not require that argv.WellFormed().
//
// argv is protected by metadataMu.
argv usermem.AddrRange
// envv is the application envv. This is set up by the loader and may be
// modified by prctl(PR_SET_MM_ENV_START/PR_SET_MM_ENV_END). No
// requirements apply to envv; we do not require that envv.WellFormed().
//
// envv is protected by metadataMu.
envv usermem.AddrRange
// auxv is the ELF's auxiliary vector.
//
// auxv is protected by metadataMu.
auxv arch.Auxv
// executable is the executable for this MemoryManager. If executable
// is not nil, it holds a reference on the Dirent.
//
// executable is protected by metadataMu.
executable *fs.Dirent
// dumpability describes if and how this MemoryManager may be dumped to
// userspace.
//
// dumpability is protected by metadataMu.
dumpability Dumpability
// aioManager keeps track of AIOContexts used for async IOs. AIOManager
// must be cloned when CLONE_VM is used.
aioManager aioManager
}
// vma represents a virtual memory area.
//
// +stateify savable
type vma struct {
// mappable is the virtual memory object mapped by this vma. If mappable is
// nil, the vma represents a private anonymous mapping.
mappable memmap.Mappable
// off is the offset into mappable at which this vma begins. If mappable is
// nil, off is meaningless.
off uint64
// To speedup VMA save/restore, we group and save the following booleans
// as a single integer.
// realPerms are the memory permissions on this vma, as defined by the
// application.
realPerms usermem.AccessType `state:".(int)"`
// effectivePerms are the memory permissions on this vma which are
// actually used to control access.
//
// Invariant: effectivePerms == realPerms.Effective().
effectivePerms usermem.AccessType `state:"manual"`
// maxPerms limits the set of permissions that may ever apply to this
// memory, as well as accesses for which usermem.IOOpts.IgnorePermissions
// is true (e.g. ptrace(PTRACE_POKEDATA)).
//
// Invariant: maxPerms == maxPerms.Effective().
maxPerms usermem.AccessType `state:"manual"`
// private is true if this is a MAP_PRIVATE mapping, such that writes to
// the mapping are propagated to a copy.
private bool `state:"manual"`
// growsDown is true if the mapping may be automatically extended downward
// under certain conditions. If growsDown is true, mappable must be nil.
//
// There is currently no corresponding growsUp flag; in Linux, the only
// architectures that can have VM_GROWSUP mappings are ia64, parisc, and
// metag, none of which we currently support.
growsDown bool `state:"manual"`
// dontfork is the MADV_DONTFORK setting for this vma configured by madvise().
dontfork bool
mlockMode memmap.MLockMode
// numaPolicy is the NUMA policy for this vma set by mbind().
numaPolicy int32
// numaNodemask is the NUMA nodemask for this vma set by mbind().
numaNodemask uint64
// If id is not nil, it controls the lifecycle of mappable and provides vma
// metadata shown in /proc/[pid]/maps, and the vma holds a reference.
id memmap.MappingIdentity
// If hint is non-empty, it is a description of the vma printed in
// /proc/[pid]/maps. hint takes priority over id.MappedName().
hint string
}
const (
vmaRealPermsRead = 1 << iota
vmaRealPermsWrite
vmaRealPermsExecute
vmaEffectivePermsRead
vmaEffectivePermsWrite
vmaEffectivePermsExecute
vmaMaxPermsRead
vmaMaxPermsWrite
vmaMaxPermsExecute
vmaPrivate
vmaGrowsDown
)
func (v *vma) saveRealPerms() int {
var b int
if v.realPerms.Read {
b |= vmaRealPermsRead
}
if v.realPerms.Write {
b |= vmaRealPermsWrite
}
if v.realPerms.Execute {
b |= vmaRealPermsExecute
}
if v.effectivePerms.Read {
b |= vmaEffectivePermsRead
}
if v.effectivePerms.Write {
b |= vmaEffectivePermsWrite
}
if v.effectivePerms.Execute {
b |= vmaEffectivePermsExecute
}
if v.maxPerms.Read {
b |= vmaMaxPermsRead
}
if v.maxPerms.Write {
b |= vmaMaxPermsWrite
}
if v.maxPerms.Execute {
b |= vmaMaxPermsExecute
}
if v.private {
b |= vmaPrivate
}
if v.growsDown {
b |= vmaGrowsDown
}
return b
}
func (v *vma) loadRealPerms(b int) {
if b&vmaRealPermsRead > 0 {
v.realPerms.Read = true
}
if b&vmaRealPermsWrite > 0 {
v.realPerms.Write = true
}
if b&vmaRealPermsExecute > 0 {
v.realPerms.Execute = true
}
if b&vmaEffectivePermsRead > 0 {
v.effectivePerms.Read = true
}
if b&vmaEffectivePermsWrite > 0 {
v.effectivePerms.Write = true
}
if b&vmaEffectivePermsExecute > 0 {
v.effectivePerms.Execute = true
}
if b&vmaMaxPermsRead > 0 {
v.maxPerms.Read = true
}
if b&vmaMaxPermsWrite > 0 {
v.maxPerms.Write = true
}
if b&vmaMaxPermsExecute > 0 {
v.maxPerms.Execute = true
}
if b&vmaPrivate > 0 {
v.private = true
}
if b&vmaGrowsDown > 0 {
v.growsDown = true
}
}
// pma represents a platform mapping area.
//
// +stateify savable
type pma struct {
// file is the file mapped by this pma. Only pmas for which file ==
// MemoryManager.mfp.MemoryFile() may be saved. pmas hold a reference to
// the corresponding file range while they exist.
file platform.File `state:"nosave"`
// off is the offset into file at which this pma begins.
//
// Note that pmas do *not* hold references on offsets in file! If private
// is true, MemoryManager.privateRefs holds the reference instead. If
// private is false, the corresponding memmap.Mappable holds the reference
// instead (per memmap.Mappable.Translate requirement).
off uint64
// translatePerms is the permissions returned by memmap.Mappable.Translate.
// If private is true, translatePerms is usermem.AnyAccess.
translatePerms usermem.AccessType
// effectivePerms is the permissions allowed for non-ignorePermissions
// accesses. maxPerms is the permissions allowed for ignorePermissions
// accesses. These are vma.effectivePerms and vma.maxPerms respectively,
// masked by pma.translatePerms and with Write disallowed if pma.needCOW is
// true.
//
// These are stored in the pma so that the IO implementation can avoid
// iterating mm.vmas when pmas already exist.
effectivePerms usermem.AccessType
maxPerms usermem.AccessType
// needCOW is true if writes to the mapping must be propagated to a copy.
needCOW bool
// private is true if this pma represents private memory.
//
// If private is true, file must be MemoryManager.mfp.MemoryFile(), the pma
// holds a reference on the mapped memory that is tracked in privateRefs,
// and calls to Invalidate for which
// memmap.InvalidateOpts.InvalidatePrivate is false should ignore the pma.
//
// If private is false, this pma caches a translation from the
// corresponding vma's memmap.Mappable.Translate.
private bool
// If internalMappings is not empty, it is the cached return value of
// file.MapInternal for the platform.FileRange mapped by this pma.
internalMappings safemem.BlockSeq `state:"nosave"`
}
// +stateify savable
type privateRefs struct {
mu sync.Mutex `state:"nosave"`
// refs maps offsets into MemoryManager.mfp.MemoryFile() to the number of
// pmas (or, equivalently, MemoryManagers) that share ownership of the
// memory at that offset.
refs fileRefcountSet
}
type invalidateArgs struct {
ar usermem.AddrRange
opts memmap.InvalidateOpts
}
// fileRefcountSetFunctions implements segment.Functions for fileRefcountSet.
type fileRefcountSetFunctions struct{}
func (fileRefcountSetFunctions) MinKey() uint64 {
return 0
}
func (fileRefcountSetFunctions) MaxKey() uint64 {
return ^uint64(0)
}
func (fileRefcountSetFunctions) ClearValue(_ *int32) {
}
func (fileRefcountSetFunctions) Merge(_ platform.FileRange, rc1 int32, _ platform.FileRange, rc2 int32) (int32, bool) {
return rc1, rc1 == rc2
}
func (fileRefcountSetFunctions) Split(_ platform.FileRange, rc int32, _ uint64) (int32, int32) {
return rc, rc
}
|