summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/mm/io.go
blob: e0cebef84bbcbbc20186e1978e434d472fdc59d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package mm

import (
	"gvisor.googlesource.com/gvisor/pkg/sentry/context"
	"gvisor.googlesource.com/gvisor/pkg/sentry/platform"
	"gvisor.googlesource.com/gvisor/pkg/sentry/safemem"
	"gvisor.googlesource.com/gvisor/pkg/sentry/usermem"
	"gvisor.googlesource.com/gvisor/pkg/syserror"
)

// There are two supported ways to copy data to/from application virtual
// memory:
//
// 1. Internally-mapped copying: Determine the platform.File that backs the
// copied-to/from virtual address, obtain a mapping of its pages, and read or
// write to the mapping.
//
// 2. AddressSpace copying: If platform.Platform.SupportsAddressSpaceIO() is
// true, AddressSpace permissions are applicable, and an AddressSpace is
// available, copy directly through the AddressSpace, handling faults as
// needed.
//
// (Given that internally-mapped copying requires that backing memory is always
// implemented using a host file descriptor, we could also preadv/pwritev to it
// instead. But this would incur a host syscall for each use of the mapped
// page, whereas mmap is a one-time cost.)
//
// The fixed overhead of internally-mapped copying is expected to be higher
// than that of AddressSpace copying since the former always needs to translate
// addresses, whereas the latter only needs to do so when faults occur.
// However, the throughput of internally-mapped copying is expected to be
// somewhat higher than that of AddressSpace copying due to the high cost of
// page faults and because implementations of the latter usually rely on
// safecopy, which doesn't use AVX registers. So we prefer to use AddressSpace
// copying (when available) for smaller copies, and switch to internally-mapped
// copying once a size threshold is exceeded.
const (
	// copyMapMinBytes is the size threshold for switching to internally-mapped
	// copying in CopyOut, CopyIn, and ZeroOut.
	copyMapMinBytes = 32 << 10 // 32 KB

	// rwMapMinBytes is the size threshold for switching to internally-mapped
	// copying in CopyOutFrom and CopyInTo. It's lower than copyMapMinBytes
	// since AddressSpace copying in this case requires additional buffering;
	// see CopyOutFrom for details.
	rwMapMinBytes = 512
)

// CheckIORange is similar to usermem.Addr.ToRange, but applies bounds checks
// consistent with Linux's arch/x86/include/asm/uaccess.h:access_ok().
//
// Preconditions: length >= 0.
func (mm *MemoryManager) CheckIORange(addr usermem.Addr, length int64) (usermem.AddrRange, bool) {
	// Note that access_ok() constrains end even if length == 0.
	ar, ok := addr.ToRange(uint64(length))
	return ar, (ok && ar.End <= mm.layout.MaxAddr)
}

// checkIOVec applies bound checks consistent with Linux's
// arch/x86/include/asm/uaccess.h:access_ok() to ars.
func (mm *MemoryManager) checkIOVec(ars usermem.AddrRangeSeq) bool {
	for !ars.IsEmpty() {
		ar := ars.Head()
		if _, ok := mm.CheckIORange(ar.Start, int64(ar.Length())); !ok {
			return false
		}
		ars = ars.Tail()
	}
	return true
}

func (mm *MemoryManager) asioEnabled(opts usermem.IOOpts) bool {
	return mm.haveASIO && !opts.IgnorePermissions && opts.AddressSpaceActive
}

// translateIOError converts errors to EFAULT, as is usually reported for all
// I/O errors originating from MM in Linux.
func translateIOError(ctx context.Context, err error) error {
	if err == nil {
		return nil
	}
	if logIOErrors {
		ctx.Debugf("MM I/O error: %v", err)
	}
	return syserror.EFAULT
}

// CopyOut implements usermem.IO.CopyOut.
func (mm *MemoryManager) CopyOut(ctx context.Context, addr usermem.Addr, src []byte, opts usermem.IOOpts) (int, error) {
	ar, ok := mm.CheckIORange(addr, int64(len(src)))
	if !ok {
		return 0, syserror.EFAULT
	}

	if len(src) == 0 {
		return 0, nil
	}

	// Do AddressSpace IO if applicable.
	if mm.asioEnabled(opts) && len(src) < copyMapMinBytes {
		return mm.asCopyOut(ctx, addr, src)
	}

	// Go through internal mappings.
	n64, err := mm.withInternalMappings(ctx, ar, usermem.Write, opts.IgnorePermissions, func(ims safemem.BlockSeq) (uint64, error) {
		n, err := safemem.CopySeq(ims, safemem.BlockSeqOf(safemem.BlockFromSafeSlice(src)))
		return n, translateIOError(ctx, err)
	})
	return int(n64), err
}

func (mm *MemoryManager) asCopyOut(ctx context.Context, addr usermem.Addr, src []byte) (int, error) {
	var done int
	for {
		n, err := mm.as.CopyOut(addr+usermem.Addr(done), src[done:])
		done += n
		if err == nil {
			return done, nil
		}
		if f, ok := err.(platform.SegmentationFault); ok {
			ar, _ := addr.ToRange(uint64(len(src)))
			if err := mm.handleASIOFault(ctx, f.Addr, ar, usermem.Write); err != nil {
				return done, err
			}
			continue
		}
		return done, translateIOError(ctx, err)
	}
}

// CopyIn implements usermem.IO.CopyIn.
func (mm *MemoryManager) CopyIn(ctx context.Context, addr usermem.Addr, dst []byte, opts usermem.IOOpts) (int, error) {
	ar, ok := mm.CheckIORange(addr, int64(len(dst)))
	if !ok {
		return 0, syserror.EFAULT
	}

	if len(dst) == 0 {
		return 0, nil
	}

	// Do AddressSpace IO if applicable.
	if mm.asioEnabled(opts) && len(dst) < copyMapMinBytes {
		return mm.asCopyIn(ctx, addr, dst)
	}

	// Go through internal mappings.
	n64, err := mm.withInternalMappings(ctx, ar, usermem.Read, opts.IgnorePermissions, func(ims safemem.BlockSeq) (uint64, error) {
		n, err := safemem.CopySeq(safemem.BlockSeqOf(safemem.BlockFromSafeSlice(dst)), ims)
		return n, translateIOError(ctx, err)
	})
	return int(n64), err
}

func (mm *MemoryManager) asCopyIn(ctx context.Context, addr usermem.Addr, dst []byte) (int, error) {
	var done int
	for {
		n, err := mm.as.CopyIn(addr+usermem.Addr(done), dst[done:])
		done += n
		if err == nil {
			return done, nil
		}
		if f, ok := err.(platform.SegmentationFault); ok {
			ar, _ := addr.ToRange(uint64(len(dst)))
			if err := mm.handleASIOFault(ctx, f.Addr, ar, usermem.Read); err != nil {
				return done, err
			}
			continue
		}
		return done, translateIOError(ctx, err)
	}
}

// ZeroOut implements usermem.IO.ZeroOut.
func (mm *MemoryManager) ZeroOut(ctx context.Context, addr usermem.Addr, toZero int64, opts usermem.IOOpts) (int64, error) {
	ar, ok := mm.CheckIORange(addr, toZero)
	if !ok {
		return 0, syserror.EFAULT
	}

	if toZero == 0 {
		return 0, nil
	}

	// Do AddressSpace IO if applicable.
	if mm.asioEnabled(opts) && toZero < copyMapMinBytes {
		return mm.asZeroOut(ctx, addr, toZero)
	}

	// Go through internal mappings.
	return mm.withInternalMappings(ctx, ar, usermem.Write, opts.IgnorePermissions, func(dsts safemem.BlockSeq) (uint64, error) {
		n, err := safemem.ZeroSeq(dsts)
		return n, translateIOError(ctx, err)
	})
}

func (mm *MemoryManager) asZeroOut(ctx context.Context, addr usermem.Addr, toZero int64) (int64, error) {
	var done int64
	for {
		n, err := mm.as.ZeroOut(addr+usermem.Addr(done), uintptr(toZero-done))
		done += int64(n)
		if err == nil {
			return done, nil
		}
		if f, ok := err.(platform.SegmentationFault); ok {
			ar, _ := addr.ToRange(uint64(toZero))
			if err := mm.handleASIOFault(ctx, f.Addr, ar, usermem.Write); err != nil {
				return done, err
			}
			continue
		}
		return done, translateIOError(ctx, err)
	}
}

// CopyOutFrom implements usermem.IO.CopyOutFrom.
func (mm *MemoryManager) CopyOutFrom(ctx context.Context, ars usermem.AddrRangeSeq, src safemem.Reader, opts usermem.IOOpts) (int64, error) {
	if !mm.checkIOVec(ars) {
		return 0, syserror.EFAULT
	}

	if ars.NumBytes() == 0 {
		return 0, nil
	}

	// Do AddressSpace IO if applicable.
	if mm.asioEnabled(opts) && ars.NumBytes() < rwMapMinBytes {
		// We have to introduce a buffered copy, instead of just passing a
		// safemem.BlockSeq representing addresses in the AddressSpace to src.
		// This is because usermem.IO.CopyOutFrom() guarantees that it calls
		// src.ReadToBlocks() at most once, which is incompatible with handling
		// faults between calls. In the future, this is probably best resolved
		// by introducing a CopyOutFrom variant or option that allows it to
		// call src.ReadToBlocks() any number of times.
		//
		// This issue applies to CopyInTo as well.
		buf := make([]byte, int(ars.NumBytes()))
		bufN, bufErr := src.ReadToBlocks(safemem.BlockSeqOf(safemem.BlockFromSafeSlice(buf)))
		var done int64
		for done < int64(bufN) {
			ar := ars.Head()
			cplen := int64(ar.Length())
			if cplen > int64(bufN)-done {
				cplen = int64(bufN) - done
			}
			n, err := mm.asCopyOut(ctx, ar.Start, buf[int(done):int(done+cplen)])
			done += int64(n)
			if err != nil {
				return done, err
			}
			ars = ars.Tail()
		}
		// Do not convert errors returned by src to EFAULT.
		return done, bufErr
	}

	// Go through internal mappings.
	return mm.withVecInternalMappings(ctx, ars, usermem.Write, opts.IgnorePermissions, src.ReadToBlocks)
}

// CopyInTo implements usermem.IO.CopyInTo.
func (mm *MemoryManager) CopyInTo(ctx context.Context, ars usermem.AddrRangeSeq, dst safemem.Writer, opts usermem.IOOpts) (int64, error) {
	if !mm.checkIOVec(ars) {
		return 0, syserror.EFAULT
	}

	if ars.NumBytes() == 0 {
		return 0, nil
	}

	// Do AddressSpace IO if applicable.
	if mm.asioEnabled(opts) && ars.NumBytes() < rwMapMinBytes {
		buf := make([]byte, int(ars.NumBytes()))
		var done int
		var bufErr error
		for !ars.IsEmpty() {
			ar := ars.Head()
			var n int
			n, bufErr = mm.asCopyIn(ctx, ar.Start, buf[done:done+int(ar.Length())])
			done += n
			if bufErr != nil {
				break
			}
			ars = ars.Tail()
		}
		n, err := dst.WriteFromBlocks(safemem.BlockSeqOf(safemem.BlockFromSafeSlice(buf[:done])))
		if err != nil {
			return int64(n), err
		}
		// Do not convert errors returned by dst to EFAULT.
		return int64(n), bufErr
	}

	// Go through internal mappings.
	return mm.withVecInternalMappings(ctx, ars, usermem.Read, opts.IgnorePermissions, dst.WriteFromBlocks)
}

// SwapUint32 implements usermem.IO.SwapUint32.
func (mm *MemoryManager) SwapUint32(ctx context.Context, addr usermem.Addr, new uint32, opts usermem.IOOpts) (uint32, error) {
	ar, ok := mm.CheckIORange(addr, 4)
	if !ok {
		return 0, syserror.EFAULT
	}

	// Do AddressSpace IO if applicable.
	if mm.haveASIO && opts.AddressSpaceActive && !opts.IgnorePermissions {
		for {
			old, err := mm.as.SwapUint32(addr, new)
			if err == nil {
				return old, nil
			}
			if f, ok := err.(platform.SegmentationFault); ok {
				if err := mm.handleASIOFault(ctx, f.Addr, ar, usermem.ReadWrite); err != nil {
					return 0, err
				}
				continue
			}
			return 0, translateIOError(ctx, err)
		}
	}

	// Go through internal mappings.
	var old uint32
	_, err := mm.withInternalMappings(ctx, ar, usermem.ReadWrite, opts.IgnorePermissions, func(ims safemem.BlockSeq) (uint64, error) {
		if ims.NumBlocks() != 1 || ims.NumBytes() != 4 {
			// Atomicity is unachievable across mappings.
			return 0, syserror.EFAULT
		}
		im := ims.Head()
		var err error
		old, err = safemem.SwapUint32(im, new)
		if err != nil {
			return 0, translateIOError(ctx, err)
		}
		// Return the number of bytes read.
		return 4, nil
	})
	return old, err
}

// CompareAndSwapUint32 implements usermem.IO.CompareAndSwapUint32.
func (mm *MemoryManager) CompareAndSwapUint32(ctx context.Context, addr usermem.Addr, old, new uint32, opts usermem.IOOpts) (uint32, error) {
	ar, ok := mm.CheckIORange(addr, 4)
	if !ok {
		return 0, syserror.EFAULT
	}

	// Do AddressSpace IO if applicable.
	if mm.haveASIO && opts.AddressSpaceActive && !opts.IgnorePermissions {
		for {
			prev, err := mm.as.CompareAndSwapUint32(addr, old, new)
			if err == nil {
				return prev, nil
			}
			if f, ok := err.(platform.SegmentationFault); ok {
				if err := mm.handleASIOFault(ctx, f.Addr, ar, usermem.ReadWrite); err != nil {
					return 0, err
				}
				continue
			}
			return 0, translateIOError(ctx, err)
		}
	}

	// Go through internal mappings.
	var prev uint32
	_, err := mm.withInternalMappings(ctx, ar, usermem.ReadWrite, opts.IgnorePermissions, func(ims safemem.BlockSeq) (uint64, error) {
		if ims.NumBlocks() != 1 || ims.NumBytes() != 4 {
			// Atomicity is unachievable across mappings.
			return 0, syserror.EFAULT
		}
		im := ims.Head()
		var err error
		prev, err = safemem.CompareAndSwapUint32(im, old, new)
		if err != nil {
			return 0, translateIOError(ctx, err)
		}
		// Return the number of bytes read.
		return 4, nil
	})
	return prev, err
}

// LoadUint32 implements usermem.IO.LoadUint32.
func (mm *MemoryManager) LoadUint32(ctx context.Context, addr usermem.Addr, opts usermem.IOOpts) (uint32, error) {
	ar, ok := mm.CheckIORange(addr, 4)
	if !ok {
		return 0, syserror.EFAULT
	}

	// Do AddressSpace IO if applicable.
	if mm.haveASIO && opts.AddressSpaceActive && !opts.IgnorePermissions {
		for {
			val, err := mm.as.LoadUint32(addr)
			if err == nil {
				return val, nil
			}
			if f, ok := err.(platform.SegmentationFault); ok {
				if err := mm.handleASIOFault(ctx, f.Addr, ar, usermem.Read); err != nil {
					return 0, err
				}
				continue
			}
			return 0, translateIOError(ctx, err)
		}
	}

	// Go through internal mappings.
	var val uint32
	_, err := mm.withInternalMappings(ctx, ar, usermem.Read, opts.IgnorePermissions, func(ims safemem.BlockSeq) (uint64, error) {
		if ims.NumBlocks() != 1 || ims.NumBytes() != 4 {
			// Atomicity is unachievable across mappings.
			return 0, syserror.EFAULT
		}
		im := ims.Head()
		var err error
		val, err = safemem.LoadUint32(im)
		if err != nil {
			return 0, translateIOError(ctx, err)
		}
		// Return the number of bytes read.
		return 4, nil
	})
	return val, err
}

// handleASIOFault handles a page fault at address addr for an AddressSpaceIO
// operation spanning ioar.
//
// Preconditions: mm.as != nil. ioar.Length() != 0. ioar.Contains(addr).
func (mm *MemoryManager) handleASIOFault(ctx context.Context, addr usermem.Addr, ioar usermem.AddrRange, at usermem.AccessType) error {
	// Try to map all remaining pages in the I/O operation. This RoundUp can't
	// overflow because otherwise it would have been caught by CheckIORange.
	end, _ := ioar.End.RoundUp()
	ar := usermem.AddrRange{addr.RoundDown(), end}

	// Don't bother trying existingPMAsLocked; in most cases, if we did have
	// existing pmas, we wouldn't have faulted.

	// Ensure that we have usable vmas. Here and below, only return early if we
	// can't map the first (faulting) page; failure to map later pages are
	// silently ignored. This maximizes partial success.
	mm.mappingMu.RLock()
	vseg, vend, err := mm.getVMAsLocked(ctx, ar, at, false)
	if vendaddr := vend.Start(); vendaddr < ar.End {
		if vendaddr <= ar.Start {
			mm.mappingMu.RUnlock()
			return translateIOError(ctx, err)
		}
		ar.End = vendaddr
	}

	// Ensure that we have usable pmas.
	mm.activeMu.Lock()
	pseg, pend, err := mm.getPMAsLocked(ctx, vseg, ar, pmaOpts{
		breakCOW: at.Write,
	})
	mm.mappingMu.RUnlock()
	if pendaddr := pend.Start(); pendaddr < ar.End {
		if pendaddr <= ar.Start {
			mm.activeMu.Unlock()
			return translateIOError(ctx, err)
		}
		ar.End = pendaddr
	}

	// Downgrade to a read-lock on activeMu since we don't need to mutate pmas
	// anymore.
	mm.activeMu.DowngradeLock()

	err = mm.mapASLocked(pseg, ar, false)
	mm.activeMu.RUnlock()
	return translateIOError(ctx, err)
}

// withInternalMappings ensures that pmas exist for all addresses in ar,
// support access of type (at, ignorePermissions), and have internal mappings
// cached. It then calls f with mm.activeMu locked for reading, passing
// internal mappings for the subrange of ar for which this property holds.
//
// withInternalMappings takes a function returning uint64 since many safemem
// functions have this property, but returns an int64 since this is usually
// more useful for usermem.IO methods.
//
// Preconditions: 0 < ar.Length() <= math.MaxInt64.
func (mm *MemoryManager) withInternalMappings(ctx context.Context, ar usermem.AddrRange, at usermem.AccessType, ignorePermissions bool, f func(safemem.BlockSeq) (uint64, error)) (int64, error) {
	po := pmaOpts{
		breakCOW: at.Write,
	}

	// If pmas are already available, we can do IO without touching mm.vmas or
	// mm.mappingMu.
	mm.activeMu.RLock()
	if pseg := mm.existingPMAsLocked(ar, at, ignorePermissions, po, true /* needInternalMappings */); pseg.Ok() {
		n, err := f(mm.internalMappingsLocked(pseg, ar))
		mm.activeMu.RUnlock()
		// Do not convert errors returned by f to EFAULT.
		return int64(n), err
	}
	mm.activeMu.RUnlock()

	// Ensure that we have usable vmas.
	mm.mappingMu.RLock()
	vseg, vend, verr := mm.getVMAsLocked(ctx, ar, at, ignorePermissions)
	if vendaddr := vend.Start(); vendaddr < ar.End {
		if vendaddr <= ar.Start {
			mm.mappingMu.RUnlock()
			return 0, translateIOError(ctx, verr)
		}
		ar.End = vendaddr
	}

	// Ensure that we have usable pmas.
	mm.activeMu.Lock()
	pseg, pend, perr := mm.getPMAsLocked(ctx, vseg, ar, po)
	mm.mappingMu.RUnlock()
	if pendaddr := pend.Start(); pendaddr < ar.End {
		if pendaddr <= ar.Start {
			mm.activeMu.Unlock()
			return 0, translateIOError(ctx, perr)
		}
		ar.End = pendaddr
	}
	imend, imerr := mm.getPMAInternalMappingsLocked(pseg, ar)
	mm.activeMu.DowngradeLock()
	if imendaddr := imend.Start(); imendaddr < ar.End {
		if imendaddr <= ar.Start {
			mm.activeMu.RUnlock()
			return 0, translateIOError(ctx, imerr)
		}
		ar.End = imendaddr
	}

	// Do I/O.
	un, err := f(mm.internalMappingsLocked(pseg, ar))
	mm.activeMu.RUnlock()
	n := int64(un)

	// Return the first error in order of progress through ar.
	if err != nil {
		// Do not convert errors returned by f to EFAULT.
		return n, err
	}
	if imerr != nil {
		return n, translateIOError(ctx, imerr)
	}
	if perr != nil {
		return n, translateIOError(ctx, perr)
	}
	return n, translateIOError(ctx, verr)
}

// withVecInternalMappings ensures that pmas exist for all addresses in ars,
// support access of type (at, ignorePermissions), and have internal mappings
// cached. It then calls f with mm.activeMu locked for reading, passing
// internal mappings for the subset of ars for which this property holds.
//
// Preconditions: !ars.IsEmpty().
func (mm *MemoryManager) withVecInternalMappings(ctx context.Context, ars usermem.AddrRangeSeq, at usermem.AccessType, ignorePermissions bool, f func(safemem.BlockSeq) (uint64, error)) (int64, error) {
	// withInternalMappings is faster than withVecInternalMappings because of
	// iterator plumbing (this isn't generally practical in the vector case due
	// to iterator invalidation between AddrRanges). Use it if possible.
	if ars.NumRanges() == 1 {
		return mm.withInternalMappings(ctx, ars.Head(), at, ignorePermissions, f)
	}

	po := pmaOpts{
		breakCOW: at.Write,
	}

	// If pmas are already available, we can do IO without touching mm.vmas or
	// mm.mappingMu.
	mm.activeMu.RLock()
	if mm.existingVecPMAsLocked(ars, at, ignorePermissions, po, true /* needInternalMappings */) {
		n, err := f(mm.vecInternalMappingsLocked(ars))
		mm.activeMu.RUnlock()
		// Do not convert errors returned by f to EFAULT.
		return int64(n), err
	}
	mm.activeMu.RUnlock()

	// Ensure that we have usable vmas.
	mm.mappingMu.RLock()
	vars, verr := mm.getVecVMAsLocked(ctx, ars, at, ignorePermissions)
	if vars.NumBytes() == 0 {
		mm.mappingMu.RUnlock()
		return 0, translateIOError(ctx, verr)
	}

	// Ensure that we have usable pmas.
	mm.activeMu.Lock()
	pars, perr := mm.getVecPMAsLocked(ctx, vars, po)
	mm.mappingMu.RUnlock()
	if pars.NumBytes() == 0 {
		mm.activeMu.Unlock()
		return 0, translateIOError(ctx, perr)
	}
	imars, imerr := mm.getVecPMAInternalMappingsLocked(pars)
	mm.activeMu.DowngradeLock()
	if imars.NumBytes() == 0 {
		mm.activeMu.RUnlock()
		return 0, translateIOError(ctx, imerr)
	}

	// Do I/O.
	un, err := f(mm.vecInternalMappingsLocked(imars))
	mm.activeMu.RUnlock()
	n := int64(un)

	// Return the first error in order of progress through ars.
	if err != nil {
		// Do not convert errors from f to EFAULT.
		return n, err
	}
	if imerr != nil {
		return n, translateIOError(ctx, imerr)
	}
	if perr != nil {
		return n, translateIOError(ctx, perr)
	}
	return n, translateIOError(ctx, verr)
}

// truncatedAddrRangeSeq returns a copy of ars, but with the end truncated to
// at most address end on AddrRange arsit.Head(). It is used in vector I/O paths to
// truncate usermem.AddrRangeSeq when errors occur.
//
// Preconditions: !arsit.IsEmpty(). end <= arsit.Head().End.
func truncatedAddrRangeSeq(ars, arsit usermem.AddrRangeSeq, end usermem.Addr) usermem.AddrRangeSeq {
	ar := arsit.Head()
	if end <= ar.Start {
		return ars.TakeFirst64(ars.NumBytes() - arsit.NumBytes())
	}
	return ars.TakeFirst64(ars.NumBytes() - arsit.NumBytes() + int64(end-ar.Start))
}