1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package mm
import (
"fmt"
"sync/atomic"
"gvisor.googlesource.com/gvisor/pkg/atomicbitops"
"gvisor.googlesource.com/gvisor/pkg/sentry/platform"
"gvisor.googlesource.com/gvisor/pkg/sentry/usermem"
)
// AddressSpace returns the platform.AddressSpace bound to mm.
//
// Preconditions: The caller must have called mm.Activate().
func (mm *MemoryManager) AddressSpace() platform.AddressSpace {
if atomic.LoadInt32(&mm.active) == 0 {
panic("trying to use inactive address space?")
}
return mm.as
}
// Activate ensures this MemoryManager has a platform.AddressSpace.
//
// The caller must not hold any locks when calling Activate.
//
// When this MemoryManager is no longer needed by a task, it should call
// Deactivate to release the reference.
func (mm *MemoryManager) Activate() error {
// Fast path: the MemoryManager already has an active
// platform.AddressSpace, and we just need to indicate that we need it too.
if atomicbitops.IncUnlessZeroInt32(&mm.active) {
return nil
}
for {
// Slow path: may need to synchronize with other goroutines changing
// mm.active to or from zero.
mm.activeMu.Lock()
// Inline Unlock instead of using a defer for performance since this
// method is commonly in the hot-path.
// Check if we raced with another goroutine performing activation.
if atomic.LoadInt32(&mm.active) > 0 {
// This can't race; Deactivate can't decrease mm.active from 1 to 0
// without holding activeMu.
atomic.AddInt32(&mm.active, 1)
mm.activeMu.Unlock()
return nil
}
// Do we have a context? If so, then we never unmapped it. This can
// only be the case if !mm.p.CooperativelySchedulesAddressSpace().
if mm.as != nil {
atomic.StoreInt32(&mm.active, 1)
mm.activeMu.Unlock()
return nil
}
// Get a new address space. We must force unmapping by passing nil to
// NewAddressSpace if requested. (As in the nil interface object, not a
// typed nil.)
mappingsID := (interface{})(mm)
if mm.unmapAllOnActivate {
mappingsID = nil
}
as, c, err := mm.p.NewAddressSpace(mappingsID)
if err != nil {
mm.activeMu.Unlock()
return err
}
if as == nil {
// AddressSpace is unavailable, we must wait.
//
// activeMu must not be held while waiting, as the user
// of the address space we are waiting on may attempt
// to take activeMu.
//
// Don't call UninterruptibleSleepStart to register the
// wait to allow the watchdog stuck task to trigger in
// case a process is starved waiting for the address
// space.
mm.activeMu.Unlock()
<-c
continue
}
// Okay, we could restore all mappings at this point.
// But forget that. Let's just let them fault in.
mm.as = as
// Unmapping is done, if necessary.
mm.unmapAllOnActivate = false
// Now that m.as has been assigned, we can set m.active to a non-zero value
// to enable the fast path.
atomic.StoreInt32(&mm.active, 1)
mm.activeMu.Unlock()
return nil
}
}
// Deactivate releases a reference to the MemoryManager.
func (mm *MemoryManager) Deactivate() {
// Fast path: this is not the last goroutine to deactivate the
// MemoryManager.
if atomicbitops.DecUnlessOneInt32(&mm.active) {
return
}
mm.activeMu.Lock()
// Same as Activate.
// Still active?
if atomic.AddInt32(&mm.active, -1) > 0 {
mm.activeMu.Unlock()
return
}
// Can we hold on to the address space?
if !mm.p.CooperativelySchedulesAddressSpace() {
mm.activeMu.Unlock()
return
}
// Release the address space.
mm.as.Release()
// Lost it.
mm.as = nil
mm.activeMu.Unlock()
}
// mapASLocked maps addresses in ar into mm.as. If precommit is true, mappings
// for all addresses in ar should be precommitted.
//
// Preconditions: mm.activeMu must be locked. mm.as != nil. ar.Length() != 0.
// ar must be page-aligned. pseg == mm.pmas.LowerBoundSegment(ar.Start).
func (mm *MemoryManager) mapASLocked(pseg pmaIterator, ar usermem.AddrRange, precommit bool) error {
// By default, map entire pmas at a time, under the assumption that there
// is no cost to mapping more of a pma than necessary.
mapAR := usermem.AddrRange{0, ^usermem.Addr(usermem.PageSize - 1)}
if precommit {
// When explicitly precommitting, only map ar, since overmapping may
// incur unexpected resource usage.
mapAR = ar
} else if mapUnit := mm.p.MapUnit(); mapUnit != 0 {
// Limit the range we map to ar, aligned to mapUnit.
mapMask := usermem.Addr(mapUnit - 1)
mapAR.Start = ar.Start &^ mapMask
// If rounding ar.End up overflows, just keep the existing mapAR.End.
if end := (ar.End + mapMask) &^ mapMask; end >= ar.End {
mapAR.End = end
}
}
if checkInvariants {
if !mapAR.IsSupersetOf(ar) {
panic(fmt.Sprintf("mapAR %#v is not a superset of ar %#v", mapAR, ar))
}
}
// Since this checks ar.End and not mapAR.End, we will never map a pma that
// is not required.
for pseg.Ok() && pseg.Start() < ar.End {
pma := pseg.ValuePtr()
pmaAR := pseg.Range()
pmaMapAR := pmaAR.Intersect(mapAR)
perms := pma.effectivePerms
if pma.needCOW {
perms.Write = false
}
if err := mm.as.MapFile(pmaMapAR.Start, pma.file, pseg.fileRangeOf(pmaMapAR), perms, precommit); err != nil {
return err
}
pseg = pseg.NextSegment()
}
return nil
}
// unmapASLocked removes all AddressSpace mappings for addresses in ar.
//
// Preconditions: mm.activeMu must be locked.
func (mm *MemoryManager) unmapASLocked(ar usermem.AddrRange) {
if mm.as == nil {
// No AddressSpace? Force all mappings to be unmapped on the next
// Activate.
mm.unmapAllOnActivate = true
return
}
// unmapASLocked doesn't require vmas or pmas to exist for ar, so it can be
// passed ranges that include addresses that can't be mapped by the
// application.
ar = ar.Intersect(mm.applicationAddrRange())
// Note that this AddressSpace may or may not be active. If the
// platform does not require cooperative sharing of AddressSpaces, they
// are retained between Deactivate/Activate calls. Despite not being
// active, it is still valid to perform operations on these address
// spaces.
mm.as.Unmap(ar.Start, uint64(ar.Length()))
}
|