summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/loader/vdso.go
blob: c070c7316b8da3c25d473a3c8e42b1681206d3ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package loader

import (
	"debug/elf"
	"fmt"
	"io"

	"gvisor.googlesource.com/gvisor/pkg/abi"
	"gvisor.googlesource.com/gvisor/pkg/log"
	"gvisor.googlesource.com/gvisor/pkg/sentry/arch"
	"gvisor.googlesource.com/gvisor/pkg/sentry/context"
	"gvisor.googlesource.com/gvisor/pkg/sentry/fs"
	"gvisor.googlesource.com/gvisor/pkg/sentry/fs/anon"
	"gvisor.googlesource.com/gvisor/pkg/sentry/fs/fsutil"
	"gvisor.googlesource.com/gvisor/pkg/sentry/memmap"
	"gvisor.googlesource.com/gvisor/pkg/sentry/mm"
	"gvisor.googlesource.com/gvisor/pkg/sentry/platform"
	"gvisor.googlesource.com/gvisor/pkg/sentry/safemem"
	"gvisor.googlesource.com/gvisor/pkg/sentry/uniqueid"
	"gvisor.googlesource.com/gvisor/pkg/sentry/usage"
	"gvisor.googlesource.com/gvisor/pkg/sentry/usermem"
	"gvisor.googlesource.com/gvisor/pkg/syserror"
	"gvisor.googlesource.com/gvisor/pkg/waiter"
)

type fileContext struct {
	context.Context
}

func (f *fileContext) Value(key interface{}) interface{} {
	switch key {
	case uniqueid.CtxGlobalUniqueID:
		return uint64(0)
	default:
		return f.Context.Value(key)
	}
}

// byteReader implements fs.FileOperations for reading from a []byte source.
type byteReader struct {
	waiter.AlwaysReady       `state:"nosave"`
	fsutil.FileNoFsync       `state:"nosave"`
	fsutil.FileNoIoctl       `state:"nosave"`
	fsutil.FileNoMMap        `state:"nosave"`
	fsutil.FileNoopFlush     `state:"nosave"`
	fsutil.FileNoopRelease   `state:"nosave"`
	fsutil.FileNotDirReaddir `state:"nosave"`
	fsutil.FilePipeSeek      `state:"nosave"`

	data []byte
}

var _ fs.FileOperations = (*byteReader)(nil)

// newByteReaderFile creates a fake file to read data from.
func newByteReaderFile(data []byte) *fs.File {
	// Create a fake inode.
	inode := fs.NewInode(
		&fsutil.SimpleFileInode{},
		fs.NewPseudoMountSource(),
		fs.StableAttr{
			Type:      fs.Anonymous,
			DeviceID:  anon.PseudoDevice.DeviceID(),
			InodeID:   anon.PseudoDevice.NextIno(),
			BlockSize: usermem.PageSize,
		})

	// Use the fake inode to create a fake dirent.
	dirent := fs.NewTransientDirent(inode)
	defer dirent.DecRef()

	// Use the fake dirent to make a fake file.
	flags := fs.FileFlags{Read: true, Pread: true}
	return fs.NewFile(&fileContext{Context: context.Background()}, dirent, flags, &byteReader{
		data: data,
	})
}

func (b *byteReader) Read(ctx context.Context, file *fs.File, dst usermem.IOSequence, offset int64) (int64, error) {
	if offset < 0 {
		return 0, syserror.EINVAL
	}
	if offset >= int64(len(b.data)) {
		return 0, io.EOF
	}
	n, err := dst.CopyOut(ctx, b.data[offset:])
	return int64(n), err
}

func (b *byteReader) Write(ctx context.Context, file *fs.File, src usermem.IOSequence, offset int64) (int64, error) {
	panic("Write not supported")
}

// validateVDSO checks that the VDSO can be loaded by loadVDSO.
//
// VDSOs are special (see below). Since we are going to map the VDSO directly
// rather than using a normal loading process, we require that the PT_LOAD
// segments have the same layout in the ELF as they expect to have in memory.
//
// Namely, this means that we must verify:
// * PT_LOAD file offsets are equivalent to the memory offset from the first
//   segment.
// * No extra zeroed space (memsz) is required.
// * PT_LOAD segments are in order.
// * No two PT_LOAD segments occupy parts of the same page.
// * PT_LOAD segments don't extend beyond the end of the file.
//
// ctx may be nil if f does not need it.
func validateVDSO(ctx context.Context, f *fs.File, size uint64) (elfInfo, error) {
	info, err := parseHeader(ctx, f)
	if err != nil {
		log.Infof("Unable to parse VDSO header: %v", err)
		return elfInfo{}, err
	}

	var first *elf.ProgHeader
	var prev *elf.ProgHeader
	var prevEnd usermem.Addr
	for i, phdr := range info.phdrs {
		if phdr.Type != elf.PT_LOAD {
			continue
		}

		if first == nil {
			first = &info.phdrs[i]
			if phdr.Off != 0 {
				log.Warningf("First PT_LOAD segment has non-zero file offset")
				return elfInfo{}, syserror.ENOEXEC
			}
		}

		memoryOffset := phdr.Vaddr - first.Vaddr
		if memoryOffset != phdr.Off {
			log.Warningf("PT_LOAD segment memory offset %#x != file offset %#x", memoryOffset, phdr.Off)
			return elfInfo{}, syserror.ENOEXEC
		}

		// memsz larger than filesz means that extra zeroed space should be
		// provided at the end of the segment. Since we are mapping the ELF
		// directly, we don't want to just overwrite part of the ELF with
		// zeroes.
		if phdr.Memsz != phdr.Filesz {
			log.Warningf("PT_LOAD segment memsz %#x != filesz %#x", phdr.Memsz, phdr.Filesz)
			return elfInfo{}, syserror.ENOEXEC
		}

		start := usermem.Addr(memoryOffset)
		end, ok := start.AddLength(phdr.Memsz)
		if !ok {
			log.Warningf("PT_LOAD segment size overflows: %#x + %#x", start, end)
			return elfInfo{}, syserror.ENOEXEC
		}
		if uint64(end) > size {
			log.Warningf("PT_LOAD segment end %#x extends beyond end of file %#x", end, size)
			return elfInfo{}, syserror.ENOEXEC
		}

		if prev != nil {
			if start < prevEnd {
				log.Warningf("PT_LOAD segments out of order")
				return elfInfo{}, syserror.ENOEXEC
			}

			// We mprotect entire pages, so each segment must be in
			// its own page.
			prevEndPage := prevEnd.RoundDown()
			startPage := start.RoundDown()
			if prevEndPage >= startPage {
				log.Warningf("PT_LOAD segments share a page: %#x", prevEndPage)
				return elfInfo{}, syserror.ENOEXEC
			}
		}
		prev = &info.phdrs[i]
		prevEnd = end
	}

	return info, nil
}

// VDSO describes a VDSO.
//
// NOTE: to support multiple architectures or operating systems, this
// would need to contain a VDSO for each.
//
// +stateify savable
type VDSO struct {
	// ParamPage is the VDSO parameter page. This page should be updated to
	// inform the VDSO for timekeeping data.
	ParamPage *mm.SpecialMappable

	// vdso is the VDSO ELF itself.
	vdso *mm.SpecialMappable

	// os is the operating system targeted by the VDSO.
	os abi.OS

	// arch is the architecture targeted by the VDSO.
	arch arch.Arch

	// phdrs are the VDSO ELF phdrs.
	phdrs []elf.ProgHeader `state:".([]elfProgHeader)"`
}

// PrepareVDSO validates the system VDSO and returns a VDSO, containing the
// param page for updating by the kernel.
func PrepareVDSO(p platform.Platform) (*VDSO, error) {
	vdsoFile := newByteReaderFile(vdsoBin)

	// First make sure the VDSO is valid. vdsoFile does not use ctx, so a
	// nil context can be passed.
	info, err := validateVDSO(nil, vdsoFile, uint64(len(vdsoBin)))
	vdsoFile.DecRef()
	if err != nil {
		return nil, err
	}

	// Then copy it into a VDSO mapping.
	size, ok := usermem.Addr(len(vdsoBin)).RoundUp()
	if !ok {
		return nil, fmt.Errorf("VDSO size overflows? %#x", len(vdsoBin))
	}

	vdso, err := p.Memory().Allocate(uint64(size), usage.System)
	if err != nil {
		return nil, fmt.Errorf("unable to allocate VDSO memory: %v", err)
	}

	ims, err := p.Memory().MapInternal(vdso, usermem.ReadWrite)
	if err != nil {
		p.Memory().DecRef(vdso)
		return nil, fmt.Errorf("unable to map VDSO memory: %v", err)
	}

	_, err = safemem.CopySeq(ims, safemem.BlockSeqOf(safemem.BlockFromSafeSlice(vdsoBin)))
	if err != nil {
		p.Memory().DecRef(vdso)
		return nil, fmt.Errorf("unable to copy VDSO into memory: %v", err)
	}

	// Finally, allocate a param page for this VDSO.
	paramPage, err := p.Memory().Allocate(usermem.PageSize, usage.System)
	if err != nil {
		p.Memory().DecRef(vdso)
		return nil, fmt.Errorf("unable to allocate VDSO param page: %v", err)
	}

	return &VDSO{
		ParamPage: mm.NewSpecialMappable("[vvar]", p, paramPage),
		// TODO: Don't advertise the VDSO, as some applications may
		// not be able to handle multiple [vdso] hints.
		vdso:  mm.NewSpecialMappable("", p, vdso),
		phdrs: info.phdrs,
	}, nil
}

// loadVDSO loads the VDSO into m.
//
// VDSOs are special.
//
// VDSOs are fully position independent. However, instead of loading a VDSO
// like a normal ELF binary, mapping only the PT_LOAD segments, the Linux
// kernel simply directly maps the entire file into process memory, with very
// little real ELF parsing.
//
// NOTE: This means that userspace can, and unfortunately does,
// depend on parts of the ELF that would normally not be mapped.  To maintain
// compatibility with such binaries, we load the VDSO much like Linux.
//
// loadVDSO takes a reference on the VDSO and parameter page FrameRegions.
func loadVDSO(ctx context.Context, m *mm.MemoryManager, v *VDSO, bin loadedELF) (usermem.Addr, error) {
	if v.os != bin.os {
		ctx.Warningf("Binary ELF OS %v and VDSO ELF OS %v differ", bin.os, v.os)
		return 0, syserror.ENOEXEC
	}
	if v.arch != bin.arch {
		ctx.Warningf("Binary ELF arch %v and VDSO ELF arch %v differ", bin.arch, v.arch)
		return 0, syserror.ENOEXEC
	}

	// Reserve address space for the VDSO and its parameter page, which is
	// mapped just before the VDSO.
	mapSize := v.vdso.Length() + v.ParamPage.Length()
	addr, err := m.MMap(ctx, memmap.MMapOpts{
		Length:  mapSize,
		Private: true,
	})
	if err != nil {
		ctx.Infof("Unable to reserve VDSO address space: %v", err)
		return 0, err
	}

	// Now map the param page.
	_, err = m.MMap(ctx, memmap.MMapOpts{
		Length:          v.ParamPage.Length(),
		MappingIdentity: v.ParamPage,
		Mappable:        v.ParamPage,
		Addr:            addr,
		Fixed:           true,
		Unmap:           true,
		Private:         true,
		Perms:           usermem.Read,
		MaxPerms:        usermem.Read,
	})
	if err != nil {
		ctx.Infof("Unable to map VDSO param page: %v", err)
		return 0, err
	}

	// Now map the VDSO itself.
	vdsoAddr, ok := addr.AddLength(v.ParamPage.Length())
	if !ok {
		panic(fmt.Sprintf("Part of mapped range overflows? %#x + %#x", addr, v.ParamPage.Length()))
	}
	_, err = m.MMap(ctx, memmap.MMapOpts{
		Length:          v.vdso.Length(),
		MappingIdentity: v.vdso,
		Mappable:        v.vdso,
		Addr:            vdsoAddr,
		Fixed:           true,
		Unmap:           true,
		Private:         true,
		Perms:           usermem.Read,
		MaxPerms:        usermem.AnyAccess,
	})
	if err != nil {
		ctx.Infof("Unable to map VDSO: %v", err)
		return 0, err
	}

	vdsoEnd, ok := vdsoAddr.AddLength(v.vdso.Length())
	if !ok {
		panic(fmt.Sprintf("VDSO mapping overflows? %#x + %#x", vdsoAddr, v.vdso.Length()))
	}

	// Set additional protections for the individual segments.
	var first *elf.ProgHeader
	for i, phdr := range v.phdrs {
		if phdr.Type != elf.PT_LOAD {
			continue
		}

		if first == nil {
			first = &v.phdrs[i]
		}

		memoryOffset := phdr.Vaddr - first.Vaddr
		segAddr, ok := vdsoAddr.AddLength(memoryOffset)
		if !ok {
			ctx.Warningf("PT_LOAD segment address overflows: %#x + %#x", segAddr, memoryOffset)
			return 0, syserror.ENOEXEC
		}
		segPage := segAddr.RoundDown()
		segSize := usermem.Addr(phdr.Memsz)
		segSize, ok = segSize.AddLength(segAddr.PageOffset())
		if !ok {
			ctx.Warningf("PT_LOAD segment memsize %#x + offset %#x overflows", phdr.Memsz, segAddr.PageOffset())
			return 0, syserror.ENOEXEC
		}
		segSize, ok = segSize.RoundUp()
		if !ok {
			ctx.Warningf("PT_LOAD segment size overflows: %#x", phdr.Memsz+segAddr.PageOffset())
			return 0, syserror.ENOEXEC
		}
		segEnd, ok := segPage.AddLength(uint64(segSize))
		if !ok {
			ctx.Warningf("PT_LOAD segment range overflows: %#x + %#x", segAddr, segSize)
			return 0, syserror.ENOEXEC
		}
		if segEnd > vdsoEnd {
			ctx.Warningf("PT_LOAD segment ends beyond VDSO: %#x > %#x", segEnd, vdsoEnd)
			return 0, syserror.ENOEXEC
		}

		perms := progFlagsAsPerms(phdr.Flags)
		if perms != usermem.Read {
			if err := m.MProtect(segPage, uint64(segSize), perms, false); err != nil {
				ctx.Warningf("Unable to set PT_LOAD segment protections %+v at [%#x, %#x): %v", perms, segAddr, segEnd, err)
				return 0, syserror.ENOEXEC
			}
		}
	}

	return vdsoAddr, nil
}