1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
// Copyright 2018 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
import (
"fmt"
"time"
"gvisor.googlesource.com/gvisor/pkg/abi/linux"
ktime "gvisor.googlesource.com/gvisor/pkg/sentry/kernel/time"
"gvisor.googlesource.com/gvisor/pkg/sentry/limits"
sentrytime "gvisor.googlesource.com/gvisor/pkg/sentry/time"
)
// timekeeperClock is a ktime.Clock that reads time from a
// kernel.Timekeeper-managed clock.
type timekeeperClock struct {
tk *Timekeeper
c sentrytime.ClockID
// Implements ktime.Clock.WallTimeUntil.
ktime.WallRateClock `state:"nosave"`
// Implements waiter.Waitable. (We have no ability to detect
// discontinuities from external changes to CLOCK_REALTIME).
ktime.NoClockEvents `state:"nosave"`
}
// Now implements ktime.Clock.Now.
func (tc *timekeeperClock) Now() ktime.Time {
now, err := tc.tk.GetTime(tc.c)
if err != nil {
panic(fmt.Sprintf("timekeeperClock(ClockID=%v)).Now: %v", tc.c, err))
}
return ktime.FromNanoseconds(now)
}
// tgClock is a ktime.Clock that measures the time a thread group has spent
// executing.
type tgClock struct {
tg *ThreadGroup
// If includeSys is true, the tgClock includes both time spent executing
// application code as well as time spent in the sentry. Otherwise, the
// tgClock includes only time spent executing application code.
includeSys bool
// Implements waiter.Waitable.
ktime.ClockEventsQueue `state:"nosave"`
}
// UserCPUClock returns a ktime.Clock that measures the time that a thread
// group has spent executing.
func (tg *ThreadGroup) UserCPUClock() ktime.Clock {
return tg.tm.virtClock
}
// CPUClock returns a ktime.Clock that measures the time that a thread group
// has spent executing, including sentry time.
func (tg *ThreadGroup) CPUClock() ktime.Clock {
return tg.tm.profClock
}
// Now implements ktime.Clock.Now.
func (tgc *tgClock) Now() ktime.Time {
stats := tgc.tg.CPUStats()
if tgc.includeSys {
return ktime.FromNanoseconds((stats.UserTime + stats.SysTime).Nanoseconds())
}
return ktime.FromNanoseconds(stats.UserTime.Nanoseconds())
}
// WallTimeUntil implements ktime.Clock.WallTimeUntil.
func (tgc *tgClock) WallTimeUntil(t, now ktime.Time) time.Duration {
// The assumption here is that the time spent in this process (not matter
// virtual or prof) should not exceed wall time * active tasks, since
// Task.exitThreadGroup stops accounting as it transitions to
// TaskExitInitiated.
tgc.tg.pidns.owner.mu.RLock()
n := tgc.tg.activeTasks
tgc.tg.pidns.owner.mu.RUnlock()
if n == 0 {
if t.Before(now) {
return 0
}
// The timer tick raced with thread group exit, after which no more
// tasks can enter the thread group. So tgc.Now() will never advance
// again. Return a large delay; the timer should be stopped long before
// it comes again anyway.
return time.Hour
}
// This is a lower bound on the amount of time that can elapse before an
// associated timer expires, so returning this value tends to result in a
// sequence of closely-spaced ticks just before timer expiry. To avoid
// this, round up to the nearest ClockTick; CPU usage measurements are
// limited to this resolution anyway.
remaining := time.Duration(int64(t.Sub(now))/int64(n)) * time.Nanosecond
return ((remaining + (linux.ClockTick - time.Nanosecond)) / linux.ClockTick) * linux.ClockTick
}
// taskClock is a ktime.Clock that measures the time that a task has spent
// executing.
type taskClock struct {
t *Task
// If includeSys is true, the taskClock includes both time spent executing
// application code as well as time spent in the sentry. Otherwise, the
// taskClock includes only time spent executing application code.
includeSys bool
// Implements waiter.Waitable. TimeUntil wouldn't change its estimation
// based on either of the clock events, so there's no event to be
// notified for.
ktime.NoClockEvents `state:"nosave"`
// Implements ktime.Clock.WallTimeUntil.
//
// As an upper bound, a task's clock cannot advance faster than CPU
// time. It would have to execute at a rate of more than 1 task-second
// per 1 CPU-second, which isn't possible.
ktime.WallRateClock `state:"nosave"`
}
// UserCPUClock returns a clock measuring the CPU time the task has spent
// executing application code.
func (t *Task) UserCPUClock() ktime.Clock {
return &taskClock{t: t, includeSys: false}
}
// CPUClock returns a clock measuring the CPU time the task has spent executing
// application and "kernel" code.
func (t *Task) CPUClock() ktime.Clock {
return &taskClock{t: t, includeSys: true}
}
// Now implements ktime.Clock.Now.
func (tc *taskClock) Now() ktime.Time {
stats := tc.t.CPUStats()
if tc.includeSys {
return ktime.FromNanoseconds((stats.UserTime + stats.SysTime).Nanoseconds())
}
return ktime.FromNanoseconds(stats.UserTime.Nanoseconds())
}
// signalNotifier is a ktime.Listener that sends signals to a ThreadGroup.
type signalNotifier struct {
tg *ThreadGroup
signal linux.Signal
realTimer bool
includeSys bool
}
// Notify implements ktime.TimerListener.Notify.
func (s *signalNotifier) Notify(exp uint64) {
// Since all signals sent using a signalNotifier are standard (not
// real-time) signals, we can ignore the number of expirations and send
// only a single signal.
if s.realTimer {
// real timer signal sent to leader. See kernel/time/itimer.c:it_real_fn
s.tg.SendSignal(sigPriv(s.signal))
} else {
s.tg.SendTimerSignal(sigPriv(s.signal), s.includeSys)
}
}
// Destroy implements ktime.TimerListener.Destroy.
func (s *signalNotifier) Destroy() {}
// TimerManager is a collection of supported process cpu timers.
type TimerManager struct {
// Clocks used to drive thread group execution time timers.
virtClock *tgClock
profClock *tgClock
RealTimer *ktime.Timer
VirtualTimer *ktime.Timer
ProfTimer *ktime.Timer
SoftLimitTimer *ktime.Timer
HardLimitTimer *ktime.Timer
}
// newTimerManager returns a new instance of TimerManager.
func newTimerManager(tg *ThreadGroup, monotonicClock ktime.Clock) TimerManager {
virtClock := &tgClock{tg: tg, includeSys: false}
profClock := &tgClock{tg: tg, includeSys: true}
tm := TimerManager{
virtClock: virtClock,
profClock: profClock,
RealTimer: ktime.NewTimer(monotonicClock, &signalNotifier{
tg: tg,
signal: linux.SIGALRM,
realTimer: true,
includeSys: false,
}),
VirtualTimer: ktime.NewTimer(virtClock, &signalNotifier{
tg: tg,
signal: linux.SIGVTALRM,
realTimer: false,
includeSys: false,
}),
ProfTimer: ktime.NewTimer(profClock, &signalNotifier{
tg: tg,
signal: linux.SIGPROF,
realTimer: false,
includeSys: true,
}),
SoftLimitTimer: ktime.NewTimer(profClock, &signalNotifier{
tg: tg,
signal: linux.SIGXCPU,
realTimer: false,
includeSys: true,
}),
HardLimitTimer: ktime.NewTimer(profClock, &signalNotifier{
tg: tg,
signal: linux.SIGKILL,
realTimer: false,
includeSys: true,
}),
}
tm.applyCPULimits(tg.Limits().Get(limits.CPU))
return tm
}
// Save saves this TimerManger.
// destroy destroys all timers.
func (tm *TimerManager) destroy() {
tm.RealTimer.Destroy()
tm.VirtualTimer.Destroy()
tm.ProfTimer.Destroy()
tm.SoftLimitTimer.Destroy()
tm.HardLimitTimer.Destroy()
}
func (tm *TimerManager) applyCPULimits(l limits.Limit) {
tm.SoftLimitTimer.Swap(ktime.Setting{
Enabled: l.Cur != limits.Infinity,
Next: ktime.FromNanoseconds((time.Duration(l.Cur) * time.Second).Nanoseconds()),
Period: time.Second,
})
tm.HardLimitTimer.Swap(ktime.Setting{
Enabled: l.Max != limits.Infinity,
Next: ktime.FromNanoseconds((time.Duration(l.Max) * time.Second).Nanoseconds()),
})
}
// kick is called when the number of threads in the thread group associated
// with tm increases.
func (tm *TimerManager) kick() {
tm.virtClock.Notify(ktime.ClockEventRateIncrease)
tm.profClock.Notify(ktime.ClockEventRateIncrease)
}
// pause is to pause the timers and stop timer signal delivery.
func (tm *TimerManager) pause() {
tm.RealTimer.Pause()
tm.VirtualTimer.Pause()
tm.ProfTimer.Pause()
tm.SoftLimitTimer.Pause()
tm.HardLimitTimer.Pause()
}
// resume is to resume the timers and continue timer signal delivery.
func (tm *TimerManager) resume() {
tm.RealTimer.Resume()
tm.VirtualTimer.Resume()
tm.ProfTimer.Resume()
tm.SoftLimitTimer.Resume()
tm.HardLimitTimer.Resume()
}
|