1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
|
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
import (
"fmt"
"sync"
"gvisor.googlesource.com/gvisor/pkg/sentry/kernel/auth"
"gvisor.googlesource.com/gvisor/pkg/waiter"
)
// TasksLimit is the maximum number of threads for untrusted application.
// Linux doesn't really limit this directly, rather it is limited by total
// memory size, stacks allocated and a global maximum. There's no real reason
// for us to limit it either, (esp. since threads are backed by go routines),
// and we would expect to hit resource limits long before hitting this number.
// However, for correctness, we still check that the user doesn't exceed this
// number.
//
// Note that because of the way futexes are implemented, there *are* in fact
// serious restrictions on valid thread IDs. They are limited to 2^30 - 1
// (kernel/fork.c:MAX_THREADS).
const TasksLimit = (1 << 16)
// ThreadID is a generic thread identifier.
type ThreadID int32
// String returns a decimal representation of the ThreadID.
func (tid ThreadID) String() string {
return fmt.Sprintf("%d", tid)
}
// InitTID is the TID given to the first task added to each PID namespace. The
// thread group led by InitTID is called the namespace's init process. The
// death of a PID namespace's init process causes all tasks visible in that
// namespace to be killed.
const InitTID ThreadID = 1
// A TaskSet comprises all tasks in a system.
//
// +stateify savable
type TaskSet struct {
// mu protects all relationships betweens tasks and thread groups in the
// TaskSet. (mu is approximately equivalent to Linux's tasklist_lock.)
mu sync.RWMutex `state:"nosave"`
// Root is the root PID namespace, in which all tasks in the TaskSet are
// visible. The Root pointer is immutable.
Root *PIDNamespace
// sessions is the set of all sessions.
sessions sessionList
// stopCount is the number of active external stops applicable to all tasks
// in the TaskSet (calls to TaskSet.BeginExternalStop that have not been
// paired with a call to TaskSet.EndExternalStop). stopCount is protected
// by mu.
//
// stopCount is not saved for the same reason as Task.stopCount; it is
// always reset to zero after restore.
stopCount int32 `state:"nosave"`
// liveGoroutines is the number of non-exited task goroutines in the
// TaskSet.
//
// liveGoroutines is not saved; it is reset as task goroutines are
// restarted by Task.Start.
liveGoroutines sync.WaitGroup `state:"nosave"`
// runningGoroutines is the number of running task goroutines in the
// TaskSet.
//
// runningGoroutines is not saved; its counter value is required to be zero
// at time of save (but note that this is not necessarily the same thing as
// sync.WaitGroup's zero value).
runningGoroutines sync.WaitGroup `state:"nosave"`
}
// newTaskSet returns a new, empty TaskSet.
func newTaskSet() *TaskSet {
ts := &TaskSet{}
ts.Root = newPIDNamespace(ts, nil /* parent */, auth.NewRootUserNamespace())
return ts
}
// forEachThreadGroupLocked applies f to each thread group in ts.
//
// Preconditions: ts.mu must be locked (for reading or writing).
func (ts *TaskSet) forEachThreadGroupLocked(f func(tg *ThreadGroup)) {
for tg := range ts.Root.tgids {
f(tg)
}
}
// A PIDNamespace represents a PID namespace, a bimap between thread IDs and
// tasks. See the pid_namespaces(7) man page for further details.
//
// N.B. A task is said to be visible in a PID namespace if the PID namespace
// contains a thread ID that maps to that task.
//
// +stateify savable
type PIDNamespace struct {
// owner is the TaskSet that this PID namespace belongs to. The owner
// pointer is immutable.
owner *TaskSet
// parent is the PID namespace of the process that created this one. If
// this is the root PID namespace, parent is nil. The parent pointer is
// immutable.
//
// Invariant: All tasks that are visible in this namespace are also visible
// in all ancestor namespaces.
parent *PIDNamespace
// userns is the user namespace with which this PID namespace is
// associated. Privileged operations on this PID namespace must have
// appropriate capabilities in userns. The userns pointer is immutable.
userns *auth.UserNamespace
// The following fields are protected by owner.mu.
// last is the last ThreadID to be allocated in this namespace.
last ThreadID
// tasks is a mapping from ThreadIDs in this namespace to tasks visible in
// the namespace.
tasks map[ThreadID]*Task
// tids is a mapping from tasks visible in this namespace to their
// identifiers in this namespace.
tids map[*Task]ThreadID
// tgids is a mapping from thread groups visible in this namespace to
// their identifiers in this namespace.
//
// The content of tgids is equivalent to tids[tg.leader]. This exists
// primarily as an optimization to quickly find all thread groups.
tgids map[*ThreadGroup]ThreadID
// sessions is a mapping from SessionIDs in this namespace to sessions
// visible in the namespace.
sessions map[SessionID]*Session
// sids is a mapping from sessions visible in this namespace to their
// identifiers in this namespace.
sids map[*Session]SessionID
// processGroups is a mapping from ProcessGroupIDs in this namespace to
// process groups visible in the namespace.
processGroups map[ProcessGroupID]*ProcessGroup
// pgids is a mapping from process groups visible in this namespace to
// their identifiers in this namespace.
pgids map[*ProcessGroup]ProcessGroupID
// exiting indicates that the namespace's init process is exiting or has
// exited.
exiting bool
}
func newPIDNamespace(ts *TaskSet, parent *PIDNamespace, userns *auth.UserNamespace) *PIDNamespace {
return &PIDNamespace{
owner: ts,
parent: parent,
userns: userns,
tasks: make(map[ThreadID]*Task),
tids: make(map[*Task]ThreadID),
tgids: make(map[*ThreadGroup]ThreadID),
sessions: make(map[SessionID]*Session),
sids: make(map[*Session]SessionID),
processGroups: make(map[ProcessGroupID]*ProcessGroup),
pgids: make(map[*ProcessGroup]ProcessGroupID),
}
}
// NewChild returns a new, empty PID namespace that is a child of ns. Authority
// over the new PID namespace is controlled by userns.
func (ns *PIDNamespace) NewChild(userns *auth.UserNamespace) *PIDNamespace {
return newPIDNamespace(ns.owner, ns, userns)
}
// TaskWithID returns the task with thread ID tid in PID namespace ns. If no
// task has that TID, TaskWithID returns nil.
func (ns *PIDNamespace) TaskWithID(tid ThreadID) *Task {
ns.owner.mu.RLock()
t := ns.tasks[tid]
ns.owner.mu.RUnlock()
return t
}
// ThreadGroupWithID returns the thread group lead by the task with thread ID
// tid in PID namespace ns. If no task has that TID, or if the task with that
// TID is not a thread group leader, ThreadGroupWithID returns nil.
func (ns *PIDNamespace) ThreadGroupWithID(tid ThreadID) *ThreadGroup {
ns.owner.mu.RLock()
defer ns.owner.mu.RUnlock()
t := ns.tasks[tid]
if t == nil {
return nil
}
if t != t.tg.leader {
return nil
}
return t.tg
}
// IDOfTask returns the TID assigned to the given task in PID namespace ns. If
// the task is not visible in that namespace, IDOfTask returns 0. (This return
// value is significant in some cases, e.g. getppid() is documented as
// returning 0 if the caller's parent is in an ancestor namespace and
// consequently not visible to the caller.) If the task is nil, IDOfTask returns
// 0.
func (ns *PIDNamespace) IDOfTask(t *Task) ThreadID {
ns.owner.mu.RLock()
id := ns.tids[t]
ns.owner.mu.RUnlock()
return id
}
// IDOfThreadGroup returns the TID assigned to tg's leader in PID namespace ns.
// If the task is not visible in that namespace, IDOfThreadGroup returns 0.
func (ns *PIDNamespace) IDOfThreadGroup(tg *ThreadGroup) ThreadID {
ns.owner.mu.RLock()
id := ns.tgids[tg]
ns.owner.mu.RUnlock()
return id
}
// Tasks returns a snapshot of the tasks in ns.
func (ns *PIDNamespace) Tasks() []*Task {
ns.owner.mu.RLock()
defer ns.owner.mu.RUnlock()
tasks := make([]*Task, 0, len(ns.tasks))
for t := range ns.tids {
tasks = append(tasks, t)
}
return tasks
}
// ThreadGroups returns a snapshot of the thread groups in ns.
func (ns *PIDNamespace) ThreadGroups() []*ThreadGroup {
return ns.ThreadGroupsAppend(nil)
}
// ThreadGroupsAppend appends a snapshot of the thread groups in ns to tgs.
func (ns *PIDNamespace) ThreadGroupsAppend(tgs []*ThreadGroup) []*ThreadGroup {
ns.owner.mu.RLock()
defer ns.owner.mu.RUnlock()
for tg := range ns.tgids {
tgs = append(tgs, tg)
}
return tgs
}
// UserNamespace returns the user namespace associated with PID namespace ns.
func (ns *PIDNamespace) UserNamespace() *auth.UserNamespace {
return ns.userns
}
// A threadGroupNode defines the relationship between a thread group and the
// rest of the system. Conceptually, threadGroupNode is data belonging to the
// owning TaskSet, as if TaskSet contained a field `nodes
// map[*ThreadGroup]*threadGroupNode`. However, for practical reasons,
// threadGroupNode is embedded in the ThreadGroup it represents.
// (threadGroupNode is an anonymous field in ThreadGroup; this is to expose
// threadGroupEntry's methods on ThreadGroup to make it implement
// threadGroupLinker.)
//
// +stateify savable
type threadGroupNode struct {
// pidns is the PID namespace containing the thread group and all of its
// member tasks. The pidns pointer is immutable.
pidns *PIDNamespace
// eventQueue is notified whenever a event of interest to Task.Wait occurs
// in a child of this thread group, or a ptrace tracee of a task in this
// thread group. Events are defined in task_exit.go.
//
// Note that we cannot check and save this wait queue similarly to other
// wait queues, as the queue will not be empty by the time of saving, due
// to the wait sourced from Exec().
eventQueue waiter.Queue `state:"nosave"`
// leader is the thread group's leader, which is the oldest task in the
// thread group; usually the last task in the thread group to call
// execve(), or if no such task exists then the first task in the thread
// group, which was created by a call to fork() or clone() without
// CLONE_THREAD. Once a thread group has been made visible to the rest of
// the system by TaskSet.newTask, leader is never nil.
//
// Note that it's possible for the leader to exit without causing the rest
// of the thread group to exit; in such a case, leader will still be valid
// and non-nil, but leader will not be in tasks.
//
// leader is protected by the TaskSet mutex.
leader *Task
// If execing is not nil, it is a task in the thread group that has killed
// all other tasks so that it can become the thread group leader and
// perform an execve. (execing may already be the thread group leader.)
//
// execing is analogous to Linux's signal_struct::group_exit_task.
//
// execing is protected by the TaskSet mutex.
execing *Task
// tasks is all tasks in the thread group that have not yet been reaped.
//
// tasks is protected by both the TaskSet mutex and the signal mutex:
// Mutating tasks requires locking the TaskSet mutex for writing *and*
// locking the signal mutex. Reading tasks requires locking the TaskSet
// mutex *or* locking the signal mutex.
tasks taskList
// tasksCount is the number of tasks in the thread group that have not yet
// been reaped; equivalently, tasksCount is the number of tasks in tasks.
//
// tasksCount is protected by both the TaskSet mutex and the signal mutex,
// as with tasks.
tasksCount int
// liveTasks is the number of tasks in the thread group that have not yet
// reached TaskExitZombie.
//
// liveTasks is protected by the TaskSet mutex (NOT the signal mutex).
liveTasks int
// activeTasks is the number of tasks in the thread group that have not yet
// reached TaskExitInitiated.
//
// activeTasks is protected by both the TaskSet mutex and the signal mutex,
// as with tasks.
activeTasks int
}
// PIDNamespace returns the PID namespace containing tg.
func (tg *ThreadGroup) PIDNamespace() *PIDNamespace {
return tg.pidns
}
// TaskSet returns the TaskSet containing tg.
func (tg *ThreadGroup) TaskSet() *TaskSet {
return tg.pidns.owner
}
// Leader returns tg's leader.
func (tg *ThreadGroup) Leader() *Task {
tg.pidns.owner.mu.RLock()
defer tg.pidns.owner.mu.RUnlock()
return tg.leader
}
// Count returns the number of non-exited threads in the group.
func (tg *ThreadGroup) Count() int {
tg.pidns.owner.mu.RLock()
defer tg.pidns.owner.mu.RUnlock()
var count int
for t := tg.tasks.Front(); t != nil; t = t.Next() {
count++
}
return count
}
// MemberIDs returns a snapshot of the ThreadIDs (in PID namespace pidns) for
// all tasks in tg.
func (tg *ThreadGroup) MemberIDs(pidns *PIDNamespace) []ThreadID {
tg.pidns.owner.mu.RLock()
defer tg.pidns.owner.mu.RUnlock()
var tasks []ThreadID
for t := tg.tasks.Front(); t != nil; t = t.Next() {
if id, ok := pidns.tids[t]; ok {
tasks = append(tasks, id)
}
}
return tasks
}
// ID returns tg's leader's thread ID in its own PID namespace. If tg's leader
// is dead, ID returns 0.
func (tg *ThreadGroup) ID() ThreadID {
tg.pidns.owner.mu.RLock()
id := tg.pidns.tgids[tg]
tg.pidns.owner.mu.RUnlock()
return id
}
// A taskNode defines the relationship between a task and the rest of the
// system. The comments on threadGroupNode also apply to taskNode.
//
// +stateify savable
type taskNode struct {
// tg is the thread group that this task belongs to. The tg pointer is
// immutable.
tg *ThreadGroup `state:"wait"`
// taskEntry links into tg.tasks. Note that this means that
// Task.Next/Prev/SetNext/SetPrev refer to sibling tasks in the same thread
// group. See threadGroupNode.tasks for synchronization info.
taskEntry
// parent is the task's parent. parent may be nil.
//
// parent is protected by the TaskSet mutex.
parent *Task
// children is this task's children.
//
// children is protected by the TaskSet mutex.
children map[*Task]struct{}
// If childPIDNamespace is not nil, all new tasks created by this task will
// be members of childPIDNamespace rather than this one. (As a corollary,
// this task becomes unable to create sibling tasks in the same thread
// group.)
//
// childPIDNamespace is exclusive to the task goroutine.
childPIDNamespace *PIDNamespace
}
// ThreadGroup returns the thread group containing t.
func (t *Task) ThreadGroup() *ThreadGroup {
return t.tg
}
// PIDNamespace returns the PID namespace containing t.
func (t *Task) PIDNamespace() *PIDNamespace {
return t.tg.pidns
}
// TaskSet returns the TaskSet containing t.
func (t *Task) TaskSet() *TaskSet {
return t.tg.pidns.owner
}
// Timekeeper returns the system Timekeeper.
func (t *Task) Timekeeper() *Timekeeper {
return t.k.timekeeper
}
// Parent returns t's parent.
func (t *Task) Parent() *Task {
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
return t.parent
}
// ThreadID returns t's thread ID in its own PID namespace. If the task is
// dead, ThreadID returns 0.
func (t *Task) ThreadID() ThreadID {
return t.tg.pidns.IDOfTask(t)
}
|