1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
import (
"sync/atomic"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/sentry/fs"
"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
ktime "gvisor.dev/gvisor/pkg/sentry/kernel/time"
"gvisor.dev/gvisor/pkg/sentry/limits"
"gvisor.dev/gvisor/pkg/sentry/usage"
"gvisor.dev/gvisor/pkg/sync"
)
// A ThreadGroup is a logical grouping of tasks that has widespread
// significance to other kernel features (e.g. signal handling). ("Thread
// groups" are usually called "processes" in userspace documentation.)
//
// ThreadGroup is a superset of Linux's struct signal_struct.
//
// +stateify savable
type ThreadGroup struct {
threadGroupNode
// signalHandlers is the set of signal handlers used by every task in this
// thread group. (signalHandlers may also be shared with other thread
// groups.)
//
// signalHandlers.mu (hereafter "the signal mutex") protects state related
// to signal handling, as well as state that usually needs to be atomic
// with signal handling, for all ThreadGroups and Tasks using
// signalHandlers. (This is analogous to Linux's use of struct
// sighand_struct::siglock.)
//
// The signalHandlers pointer can only be mutated during an execve
// (Task.finishExec). Consequently, when it's possible for a task in the
// thread group to be completing an execve, signalHandlers is protected by
// the owning TaskSet.mu. Otherwise, it is possible to read the
// signalHandlers pointer without synchronization. In particular,
// completing an execve requires that all other tasks in the thread group
// have exited, so task goroutines do not need the owning TaskSet.mu to
// read the signalHandlers pointer of their thread groups.
signalHandlers *SignalHandlers
// pendingSignals is the set of pending signals that may be handled by any
// task in this thread group.
//
// pendingSignals is protected by the signal mutex.
pendingSignals pendingSignals
// If groupStopDequeued is true, a task in the thread group has dequeued a
// stop signal, but has not yet initiated the group stop.
//
// groupStopDequeued is analogous to Linux's JOBCTL_STOP_DEQUEUED.
//
// groupStopDequeued is protected by the signal mutex.
groupStopDequeued bool
// groupStopSignal is the signal that caused a group stop to be initiated.
//
// groupStopSignal is protected by the signal mutex.
groupStopSignal linux.Signal
// groupStopPendingCount is the number of active tasks in the thread group
// for which Task.groupStopPending is set.
//
// groupStopPendingCount is analogous to Linux's
// signal_struct::group_stop_count.
//
// groupStopPendingCount is protected by the signal mutex.
groupStopPendingCount int
// If groupStopComplete is true, groupStopPendingCount transitioned from
// non-zero to zero without an intervening SIGCONT.
//
// groupStopComplete is analogous to Linux's SIGNAL_STOP_STOPPED.
//
// groupStopComplete is protected by the signal mutex.
groupStopComplete bool
// If groupStopWaitable is true, the thread group is indicating a waitable
// group stop event (as defined by EventChildGroupStop).
//
// Linux represents the analogous state as SIGNAL_STOP_STOPPED being set
// and group_exit_code being non-zero.
//
// groupStopWaitable is protected by the signal mutex.
groupStopWaitable bool
// If groupContNotify is true, then a SIGCONT has recently ended a group
// stop on this thread group, and the first task to observe it should
// notify its parent. groupContInterrupted is true iff SIGCONT ended an
// incomplete group stop. If groupContNotify is false, groupContInterrupted is
// meaningless.
//
// Analogues in Linux:
//
// - groupContNotify && groupContInterrupted is represented by
// SIGNAL_CLD_STOPPED.
//
// - groupContNotify && !groupContInterrupted is represented by
// SIGNAL_CLD_CONTINUED.
//
// - !groupContNotify is represented by neither flag being set.
//
// groupContNotify and groupContInterrupted are protected by the signal
// mutex.
groupContNotify bool
groupContInterrupted bool
// If groupContWaitable is true, the thread group is indicating a waitable
// continue event (as defined by EventGroupContinue).
//
// groupContWaitable is analogous to Linux's SIGNAL_STOP_CONTINUED.
//
// groupContWaitable is protected by the signal mutex.
groupContWaitable bool
// exiting is true if all tasks in the ThreadGroup should exit. exiting is
// analogous to Linux's SIGNAL_GROUP_EXIT.
//
// exiting is protected by the signal mutex. exiting can only transition
// from false to true.
exiting bool
// exitStatus is the thread group's exit status.
//
// While exiting is false, exitStatus is protected by the signal mutex.
// When exiting becomes true, exitStatus becomes immutable.
exitStatus linux.WaitStatus
// terminationSignal is the signal that this thread group's leader will
// send to its parent when it exits.
//
// terminationSignal is protected by the TaskSet mutex.
terminationSignal linux.Signal
// liveGoroutines is the number of non-exited task goroutines in the thread
// group.
//
// liveGoroutines is not saved; it is reset as task goroutines are
// restarted by Task.Start.
liveGoroutines sync.WaitGroup `state:"nosave"`
timerMu sync.Mutex `state:"nosave"`
// itimerRealTimer implements ITIMER_REAL for the thread group.
itimerRealTimer *ktime.Timer
// itimerVirtSetting is the ITIMER_VIRTUAL setting for the thread group.
//
// itimerVirtSetting is protected by the signal mutex.
itimerVirtSetting ktime.Setting
// itimerProfSetting is the ITIMER_PROF setting for the thread group.
//
// itimerProfSetting is protected by the signal mutex.
itimerProfSetting ktime.Setting
// rlimitCPUSoftSetting is the setting for RLIMIT_CPU soft limit
// notifications for the thread group.
//
// rlimitCPUSoftSetting is protected by the signal mutex.
rlimitCPUSoftSetting ktime.Setting
// cpuTimersEnabled is non-zero if itimerVirtSetting.Enabled is true,
// itimerProfSetting.Enabled is true, rlimitCPUSoftSetting.Enabled is true,
// or limits.Get(CPU) is finite.
//
// cpuTimersEnabled is protected by the signal mutex. cpuTimersEnabled is
// accessed using atomic memory operations.
cpuTimersEnabled uint32
// timers is the thread group's POSIX interval timers. nextTimerID is the
// TimerID at which allocation should begin searching for an unused ID.
//
// timers and nextTimerID are protected by timerMu.
timers map[linux.TimerID]*IntervalTimer
nextTimerID linux.TimerID
// exitedCPUStats is the CPU usage for all exited tasks in the thread
// group. exitedCPUStats is protected by the TaskSet mutex.
exitedCPUStats usage.CPUStats
// childCPUStats is the CPU usage of all joined descendants of this thread
// group. childCPUStats is protected by the TaskSet mutex.
childCPUStats usage.CPUStats
// ioUsage is the I/O usage for all exited tasks in the thread group.
// The ioUsage pointer is immutable.
ioUsage *usage.IO
// maxRSS is the historical maximum resident set size of the thread group, updated when:
//
// - A task in the thread group exits, since after all tasks have
// exited the MemoryManager is no longer reachable.
//
// - The thread group completes an execve, since this changes
// MemoryManagers.
//
// maxRSS is protected by the TaskSet mutex.
maxRSS uint64
// childMaxRSS is the maximum resident set size in bytes of all joined
// descendants of this thread group.
//
// childMaxRSS is protected by the TaskSet mutex.
childMaxRSS uint64
// Resource limits for this ThreadGroup. The limits pointer is immutable.
limits *limits.LimitSet
// processGroup is the processGroup for this thread group.
//
// processGroup is protected by the TaskSet mutex.
processGroup *ProcessGroup
// execed indicates an exec has occurred since creation. This will be
// set by finishExec, and new TheadGroups will have this field cleared.
// When execed is set, the processGroup may no longer be changed.
//
// execed is protected by the TaskSet mutex.
execed bool
// oldRSeqCritical is the thread group's old rseq critical region.
oldRSeqCritical atomic.Value `state:".(*OldRSeqCriticalRegion)"`
// mounts is the thread group's mount namespace. This does not really
// correspond to a "mount namespace" in Linux, but is more like a
// complete VFS that need not be shared between processes. See the
// comment in mounts.go for more information.
//
// mounts is immutable.
mounts *fs.MountNamespace
// tty is the thread group's controlling terminal. If nil, there is no
// controlling terminal.
//
// tty is protected by the signal mutex.
tty *TTY
// oomScoreAdj is the thread group's OOM score adjustment. This is
// currently not used but is maintained for consistency.
// TODO(gvisor.dev/issue/1967)
//
// oomScoreAdj is accessed using atomic memory operations.
oomScoreAdj int32
}
// NewThreadGroup returns a new, empty thread group in PID namespace pidns. The
// thread group leader will send its parent terminationSignal when it exits.
// The new thread group isn't visible to the system until a task has been
// created inside of it by a successful call to TaskSet.NewTask.
func (k *Kernel) NewThreadGroup(mntns *fs.MountNamespace, pidns *PIDNamespace, sh *SignalHandlers, terminationSignal linux.Signal, limits *limits.LimitSet) *ThreadGroup {
tg := &ThreadGroup{
threadGroupNode: threadGroupNode{
pidns: pidns,
},
signalHandlers: sh,
terminationSignal: terminationSignal,
ioUsage: &usage.IO{},
limits: limits,
mounts: mntns,
}
tg.itimerRealTimer = ktime.NewTimer(k.timekeeper.monotonicClock, &itimerRealListener{tg: tg})
tg.timers = make(map[linux.TimerID]*IntervalTimer)
tg.oldRSeqCritical.Store(&OldRSeqCriticalRegion{})
return tg
}
// saveOldRSeqCritical is invoked by stateify.
func (tg *ThreadGroup) saveOldRSeqCritical() *OldRSeqCriticalRegion {
return tg.oldRSeqCritical.Load().(*OldRSeqCriticalRegion)
}
// loadOldRSeqCritical is invoked by stateify.
func (tg *ThreadGroup) loadOldRSeqCritical(r *OldRSeqCriticalRegion) {
tg.oldRSeqCritical.Store(r)
}
// SignalHandlers returns the signal handlers used by tg.
//
// Preconditions: The caller must provide the synchronization required to read
// tg.signalHandlers, as described in the field's comment.
func (tg *ThreadGroup) SignalHandlers() *SignalHandlers {
return tg.signalHandlers
}
// Limits returns tg's limits.
func (tg *ThreadGroup) Limits() *limits.LimitSet {
return tg.limits
}
// Release releases the thread group's resources.
func (tg *ThreadGroup) Release(ctx context.Context) {
// Timers must be destroyed without holding the TaskSet or signal mutexes
// since timers send signals with Timer.mu locked.
tg.itimerRealTimer.Destroy()
var its []*IntervalTimer
tg.pidns.owner.mu.Lock()
tg.signalHandlers.mu.Lock()
for _, it := range tg.timers {
its = append(its, it)
}
tg.timers = make(map[linux.TimerID]*IntervalTimer) // nil maps can't be saved
tg.signalHandlers.mu.Unlock()
tg.pidns.owner.mu.Unlock()
for _, it := range its {
it.DestroyTimer()
}
if tg.mounts != nil {
tg.mounts.DecRef(ctx)
}
}
// forEachChildThreadGroupLocked indicates over all child ThreadGroups.
//
// Precondition: TaskSet.mu must be held.
func (tg *ThreadGroup) forEachChildThreadGroupLocked(fn func(*ThreadGroup)) {
for t := tg.tasks.Front(); t != nil; t = t.Next() {
for child := range t.children {
if child == child.tg.leader {
fn(child.tg)
}
}
}
}
// SetControllingTTY sets tty as the controlling terminal of tg.
func (tg *ThreadGroup) SetControllingTTY(tty *TTY, steal bool, isReadable bool) error {
tty.mu.Lock()
defer tty.mu.Unlock()
// We might be asked to set the controlling terminal of multiple
// processes, so we lock both the TaskSet and SignalHandlers.
tg.pidns.owner.mu.Lock()
defer tg.pidns.owner.mu.Unlock()
tg.signalHandlers.mu.Lock()
defer tg.signalHandlers.mu.Unlock()
// "The calling process must be a session leader and not have a
// controlling terminal already." - tty_ioctl(4)
if tg.processGroup.session.leader != tg || tg.tty != nil {
return linuxerr.EINVAL
}
creds := auth.CredentialsFromContext(tg.leader)
hasAdmin := creds.HasCapabilityIn(linux.CAP_SYS_ADMIN, creds.UserNamespace.Root())
// "If this terminal is already the controlling terminal of a different
// session group, then the ioctl fails with EPERM, unless the caller
// has the CAP_SYS_ADMIN capability and arg equals 1, in which case the
// terminal is stolen, and all processes that had it as controlling
// terminal lose it." - tty_ioctl(4)
if tty.tg != nil && tg.processGroup.session != tty.tg.processGroup.session {
// Stealing requires CAP_SYS_ADMIN in the root user namespace.
if !hasAdmin || !steal {
return linuxerr.EPERM
}
// Steal the TTY away. Unlike TIOCNOTTY, don't send signals.
for othertg := range tg.pidns.owner.Root.tgids {
// This won't deadlock by locking tg.signalHandlers
// because at this point:
// - We only lock signalHandlers if it's in the same
// session as the tty's controlling thread group.
// - We know that the calling thread group is not in
// the same session as the tty's controlling thread
// group.
if othertg.processGroup.session == tty.tg.processGroup.session {
othertg.signalHandlers.mu.Lock()
othertg.tty = nil
othertg.signalHandlers.mu.Unlock()
}
}
}
if !isReadable && !hasAdmin {
return linuxerr.EPERM
}
// Set the controlling terminal and foreground process group.
tg.tty = tty
tg.processGroup.session.foreground = tg.processGroup
// Set this as the controlling process of the terminal.
tty.tg = tg
return nil
}
// ReleaseControllingTTY gives up tty as the controlling tty of tg.
func (tg *ThreadGroup) ReleaseControllingTTY(tty *TTY) error {
tty.mu.Lock()
defer tty.mu.Unlock()
// We might be asked to set the controlling terminal of multiple
// processes, so we lock both the TaskSet and SignalHandlers.
tg.pidns.owner.mu.RLock()
defer tg.pidns.owner.mu.RUnlock()
// Just below, we may re-lock signalHandlers in order to send signals.
// Thus we can't defer Unlock here.
tg.signalHandlers.mu.Lock()
if tg.tty == nil || tg.tty != tty {
tg.signalHandlers.mu.Unlock()
return linuxerr.ENOTTY
}
// "If the process was session leader, then send SIGHUP and SIGCONT to
// the foreground process group and all processes in the current
// session lose their controlling terminal." - tty_ioctl(4)
// Remove tty as the controlling tty for each process in the session,
// then send them SIGHUP and SIGCONT.
// If we're not the session leader, we don't have to do much.
if tty.tg != tg {
tg.tty = nil
tg.signalHandlers.mu.Unlock()
return nil
}
tg.signalHandlers.mu.Unlock()
// We're the session leader. SIGHUP and SIGCONT the foreground process
// group and remove all controlling terminals in the session.
var lastErr error
for othertg := range tg.pidns.owner.Root.tgids {
if othertg.processGroup.session == tg.processGroup.session {
othertg.signalHandlers.mu.Lock()
othertg.tty = nil
if othertg.processGroup == tg.processGroup.session.foreground {
if err := othertg.leader.sendSignalLocked(&linux.SignalInfo{Signo: int32(linux.SIGHUP)}, true /* group */); err != nil {
lastErr = err
}
if err := othertg.leader.sendSignalLocked(&linux.SignalInfo{Signo: int32(linux.SIGCONT)}, true /* group */); err != nil {
lastErr = err
}
}
othertg.signalHandlers.mu.Unlock()
}
}
return lastErr
}
// ForegroundProcessGroup returns the process group ID of the foreground
// process group.
func (tg *ThreadGroup) ForegroundProcessGroup(tty *TTY) (int32, error) {
tty.mu.Lock()
defer tty.mu.Unlock()
tg.pidns.owner.mu.Lock()
defer tg.pidns.owner.mu.Unlock()
tg.signalHandlers.mu.Lock()
defer tg.signalHandlers.mu.Unlock()
// "When fd does not refer to the controlling terminal of the calling
// process, -1 is returned" - tcgetpgrp(3)
if tg.tty != tty {
return -1, linuxerr.ENOTTY
}
return int32(tg.processGroup.session.foreground.id), nil
}
// SetForegroundProcessGroup sets the foreground process group of tty to pgid.
func (tg *ThreadGroup) SetForegroundProcessGroup(tty *TTY, pgid ProcessGroupID) (int32, error) {
tty.mu.Lock()
defer tty.mu.Unlock()
tg.pidns.owner.mu.Lock()
defer tg.pidns.owner.mu.Unlock()
tg.signalHandlers.mu.Lock()
defer tg.signalHandlers.mu.Unlock()
// tty must be the controlling terminal.
if tg.tty != tty {
return -1, linuxerr.ENOTTY
}
// pgid must be positive.
if pgid < 0 {
return -1, linuxerr.EINVAL
}
// pg must not be empty. Empty process groups are removed from their
// pid namespaces.
pg, ok := tg.pidns.processGroups[pgid]
if !ok {
return -1, linuxerr.ESRCH
}
// pg must be part of this process's session.
if tg.processGroup.session != pg.session {
return -1, linuxerr.EPERM
}
//if the calling process is a member of a background group, a SIGTTOU signal is sent to all members of this background process group.
if tg.processGroup.session.foreground.id != tg.processGroup.id {
tg.processGroup.SendSignal(&linux.SignalInfo{Signo: int32(linux.SIGTTOU)})
}
tg.processGroup.session.foreground.id = pgid
return 0, nil
}
// itimerRealListener implements ktime.Listener for ITIMER_REAL expirations.
//
// +stateify savable
type itimerRealListener struct {
tg *ThreadGroup
}
// Notify implements ktime.TimerListener.Notify.
func (l *itimerRealListener) Notify(exp uint64, setting ktime.Setting) (ktime.Setting, bool) {
l.tg.SendSignal(SignalInfoPriv(linux.SIGALRM))
return ktime.Setting{}, false
}
// Destroy implements ktime.TimerListener.Destroy.
func (l *itimerRealListener) Destroy() {
}
|