1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
import (
"math"
"gvisor.googlesource.com/gvisor/pkg/abi/linux"
"gvisor.googlesource.com/gvisor/pkg/sentry/usermem"
"gvisor.googlesource.com/gvisor/pkg/syserror"
)
// MAX_RW_COUNT is the maximum size in bytes of a single read or write.
// Reads and writes that exceed this size may be silently truncated.
// (Linux: include/linux/fs.h:MAX_RW_COUNT)
var MAX_RW_COUNT = int(usermem.Addr(math.MaxInt32).RoundDown())
// Activate ensures that the task has an active address space.
func (t *Task) Activate() {
if mm := t.MemoryManager(); mm != nil {
if err := mm.Activate(); err != nil {
panic("unable to activate mm: " + err.Error())
}
}
}
// Deactivate relinquishes the task's active address space.
func (t *Task) Deactivate() {
if mm := t.MemoryManager(); mm != nil {
mm.Deactivate()
}
}
// CopyIn copies a fixed-size value or slice of fixed-size values in from the
// task's memory. The copy will fail with syscall.EFAULT if it traverses user
// memory that is unmapped or not readable by the user.
//
// This Task's AddressSpace must be active.
func (t *Task) CopyIn(addr usermem.Addr, dst interface{}) (int, error) {
return usermem.CopyObjectIn(t, t.MemoryManager(), addr, dst, usermem.IOOpts{
AddressSpaceActive: true,
})
}
// CopyInBytes is a fast version of CopyIn if the caller can serialize the
// data without reflection and pass in a byte slice.
//
// This Task's AddressSpace must be active.
func (t *Task) CopyInBytes(addr usermem.Addr, dst []byte) (int, error) {
return t.MemoryManager().CopyIn(t, addr, dst, usermem.IOOpts{
AddressSpaceActive: true,
})
}
// CopyOut copies a fixed-size value or slice of fixed-size values out to the
// task's memory. The copy will fail with syscall.EFAULT if it traverses user
// memory that is unmapped or not writeable by the user.
//
// This Task's AddressSpace must be active.
func (t *Task) CopyOut(addr usermem.Addr, src interface{}) (int, error) {
return usermem.CopyObjectOut(t, t.MemoryManager(), addr, src, usermem.IOOpts{
AddressSpaceActive: true,
})
}
// CopyOutBytes is a fast version of CopyOut if the caller can serialize the
// data without reflection and pass in a byte slice.
//
// This Task's AddressSpace must be active.
func (t *Task) CopyOutBytes(addr usermem.Addr, src []byte) (int, error) {
return t.MemoryManager().CopyOut(t, addr, src, usermem.IOOpts{
AddressSpaceActive: true,
})
}
// CopyInString copies a NUL-terminated string of length at most maxlen in from
// the task's memory. The copy will fail with syscall.EFAULT if it traverses
// user memory that is unmapped or not readable by the user.
//
// This Task's AddressSpace must be active.
func (t *Task) CopyInString(addr usermem.Addr, maxlen int) (string, error) {
return usermem.CopyStringIn(t, t.MemoryManager(), addr, maxlen, usermem.IOOpts{
AddressSpaceActive: true,
})
}
// CopyInVector copies a NULL-terminated vector of strings from the task's
// memory. The copy will fail with syscall.EFAULT if it traverses
// user memory that is unmapped or not readable by the user.
//
// maxElemSize is the maximum size of each individual element.
//
// maxTotalSize is the maximum total length of all elements plus the total
// number of elements. For example, the following strings correspond to
// the following set of sizes:
//
// { "a", "b", "c" } => 6 (3 for lengths, 3 for elements)
// { "abc" } => 4 (3 for length, 1 for elements)
//
// This Task's AddressSpace must be active.
func (t *Task) CopyInVector(addr usermem.Addr, maxElemSize, maxTotalSize int) ([]string, error) {
var v []string
for {
argAddr := t.Arch().Native(0)
if _, err := t.CopyIn(addr, argAddr); err != nil {
return v, err
}
if t.Arch().Value(argAddr) == 0 {
break
}
// Each string has a zero terminating byte counted, so copying out a string
// requires at least one byte of space. Also, see the calculation below.
if maxTotalSize <= 0 {
return nil, syserror.ENOMEM
}
thisMax := maxElemSize
if maxTotalSize < thisMax {
thisMax = maxTotalSize
}
arg, err := t.CopyInString(usermem.Addr(t.Arch().Value(argAddr)), thisMax)
if err != nil {
return v, err
}
v = append(v, arg)
addr += usermem.Addr(t.Arch().Width())
maxTotalSize -= len(arg) + 1
}
return v, nil
}
// CopyOutIovecs converts src to an array of struct iovecs and copies it to the
// memory mapped at addr.
//
// Preconditions: As for usermem.IO.CopyOut. The caller must be running on the
// task goroutine. t's AddressSpace must be active.
func (t *Task) CopyOutIovecs(addr usermem.Addr, src usermem.AddrRangeSeq) error {
switch t.Arch().Width() {
case 8:
const itemLen = 16
if _, ok := addr.AddLength(uint64(src.NumRanges()) * itemLen); !ok {
return syserror.EFAULT
}
b := t.CopyScratchBuffer(itemLen)
for ; !src.IsEmpty(); src = src.Tail() {
ar := src.Head()
usermem.ByteOrder.PutUint64(b[0:8], uint64(ar.Start))
usermem.ByteOrder.PutUint64(b[8:16], uint64(ar.Length()))
if _, err := t.CopyOutBytes(addr, b); err != nil {
return err
}
addr += itemLen
}
default:
return syserror.ENOSYS
}
return nil
}
// CopyInIovecs copies an array of numIovecs struct iovecs from the memory
// mapped at addr, converts them to usermem.AddrRanges, and returns them as a
// usermem.AddrRangeSeq.
//
// CopyInIovecs shares the following properties with Linux's
// lib/iov_iter.c:import_iovec() => fs/read_write.c:rw_copy_check_uvector():
//
// - If the length of any AddrRange would exceed the range of an ssize_t,
// CopyInIovecs returns EINVAL.
//
// - If the length of any AddrRange would cause its end to overflow,
// CopyInIovecs returns EFAULT.
//
// - If any AddrRange would include addresses outside the application address
// range, CopyInIovecs returns EFAULT.
//
// - The combined length of all AddrRanges is limited to MAX_RW_COUNT. If the
// combined length of all AddrRanges would otherwise exceed this amount, ranges
// beyond MAX_RW_COUNT are silently truncated.
//
// Preconditions: As for usermem.IO.CopyIn. The caller must be running on the
// task goroutine. t's AddressSpace must be active.
func (t *Task) CopyInIovecs(addr usermem.Addr, numIovecs int) (usermem.AddrRangeSeq, error) {
if numIovecs == 0 {
return usermem.AddrRangeSeq{}, nil
}
var dst []usermem.AddrRange
if numIovecs > 1 {
dst = make([]usermem.AddrRange, 0, numIovecs)
}
switch t.Arch().Width() {
case 8:
const itemLen = 16
if _, ok := addr.AddLength(uint64(numIovecs) * itemLen); !ok {
return usermem.AddrRangeSeq{}, syserror.EFAULT
}
b := t.CopyScratchBuffer(itemLen)
for i := 0; i < numIovecs; i++ {
if _, err := t.CopyInBytes(addr, b); err != nil {
return usermem.AddrRangeSeq{}, err
}
base := usermem.Addr(usermem.ByteOrder.Uint64(b[0:8]))
length := usermem.ByteOrder.Uint64(b[8:16])
if length > math.MaxInt64 {
return usermem.AddrRangeSeq{}, syserror.EINVAL
}
ar, ok := t.MemoryManager().CheckIORange(base, int64(length))
if !ok {
return usermem.AddrRangeSeq{}, syserror.EFAULT
}
if numIovecs == 1 {
// Special case to avoid allocating dst.
return usermem.AddrRangeSeqOf(ar).TakeFirst(MAX_RW_COUNT), nil
}
dst = append(dst, ar)
addr += itemLen
}
default:
return usermem.AddrRangeSeq{}, syserror.ENOSYS
}
// Truncate to MAX_RW_COUNT.
var total uint64
for i := range dst {
dstlen := uint64(dst[i].Length())
if rem := uint64(MAX_RW_COUNT) - total; rem < dstlen {
dst[i].End -= usermem.Addr(dstlen - rem)
dstlen = rem
}
total += dstlen
}
return usermem.AddrRangeSeqFromSlice(dst), nil
}
// SingleIOSequence returns a usermem.IOSequence representing [addr,
// addr+length) in t's address space. If this contains addresses outside the
// application address range, it returns EFAULT. If length exceeds
// MAX_RW_COUNT, the range is silently truncated.
//
// SingleIOSequence is analogous to Linux's
// lib/iov_iter.c:import_single_range(). (Note that the non-vectorized read and
// write syscalls in Linux do not use import_single_range(). However they check
// access_ok() in fs/read_write.c:vfs_read/vfs_write, and overflowing address
// ranges are truncated to MAX_RW_COUNT by fs/read_write.c:rw_verify_area().)
func (t *Task) SingleIOSequence(addr usermem.Addr, length int, opts usermem.IOOpts) (usermem.IOSequence, error) {
if length > MAX_RW_COUNT {
length = MAX_RW_COUNT
}
ar, ok := t.MemoryManager().CheckIORange(addr, int64(length))
if !ok {
return usermem.IOSequence{}, syserror.EFAULT
}
return usermem.IOSequence{
IO: t.MemoryManager(),
Addrs: usermem.AddrRangeSeqOf(ar),
Opts: opts,
}, nil
}
// IovecsIOSequence returns a usermem.IOSequence representing the array of
// iovcnt struct iovecs at addr in t's address space. opts applies to the
// returned IOSequence, not the reading of the struct iovec array.
//
// IovecsIOSequence is analogous to Linux's lib/iov_iter.c:import_iovec().
//
// Preconditions: As for Task.CopyInIovecs.
func (t *Task) IovecsIOSequence(addr usermem.Addr, iovcnt int, opts usermem.IOOpts) (usermem.IOSequence, error) {
if iovcnt < 0 || iovcnt > linux.UIO_MAXIOV {
return usermem.IOSequence{}, syserror.EINVAL
}
ars, err := t.CopyInIovecs(addr, iovcnt)
if err != nil {
return usermem.IOSequence{}, err
}
return usermem.IOSequence{
IO: t.MemoryManager(),
Addrs: ars,
Opts: opts,
}, nil
}
|