1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
import (
"fmt"
"os"
"runtime/trace"
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/bits"
"gvisor.dev/gvisor/pkg/errors"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/marshal"
"gvisor.dev/gvisor/pkg/metric"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/memmap"
)
// SyscallRestartBlock represents the restart block for a syscall restartable
// with a custom function. It encapsulates the state required to restart a
// syscall across a S/R.
type SyscallRestartBlock interface {
Restart(t *Task) (uintptr, error)
}
// SyscallControl is returned by syscalls to control the behavior of
// Task.doSyscallInvoke.
type SyscallControl struct {
// next is the state that the task goroutine should switch to. If next is
// nil, the task goroutine should continue to syscall exit as usual.
next taskRunState
// If ignoreReturn is true, Task.doSyscallInvoke should not store any value
// in the task's syscall return value register.
ignoreReturn bool
}
var (
// CtrlDoExit is returned by the implementations of the exit and exit_group
// syscalls to enter the task exit path directly, skipping syscall exit
// tracing.
CtrlDoExit = &SyscallControl{next: (*runExit)(nil), ignoreReturn: true}
// ctrlStopAndReinvokeSyscall is returned by syscalls using the external
// feature before syscall execution. This causes Task.doSyscallInvoke
// to return runSyscallReinvoke, allowing Task.run to check for stops
// before immediately re-invoking the syscall (skipping the re-checking
// of seccomp filters and ptrace which would confuse userspace
// tracing).
ctrlStopAndReinvokeSyscall = &SyscallControl{next: (*runSyscallReinvoke)(nil), ignoreReturn: true}
// ctrlStopBeforeSyscallExit is returned by syscalls that initiate a stop at
// their end. This causes Task.doSyscallInvoke to return runSyscallExit, rather
// than tail-calling it, allowing stops to be checked before syscall exit.
ctrlStopBeforeSyscallExit = &SyscallControl{next: (*runSyscallExit)(nil)}
)
func (t *Task) invokeExternal() {
t.BeginExternalStop()
go func() { // S/R-SAFE: External control flow.
defer t.EndExternalStop()
t.SyscallTable().External(t.Kernel())
}()
}
func (t *Task) executeSyscall(sysno uintptr, args arch.SyscallArguments) (rval uintptr, ctrl *SyscallControl, err error) {
s := t.SyscallTable()
fe := s.FeatureEnable.Word(sysno)
var straceContext interface{}
if bits.IsAnyOn32(fe, StraceEnableBits) {
straceContext = s.Stracer.SyscallEnter(t, sysno, args, fe)
}
if bits.IsOn32(fe, ExternalBeforeEnable) && (s.ExternalFilterBefore == nil || s.ExternalFilterBefore(t, sysno, args)) {
t.invokeExternal()
// Ensure we check for stops, then invoke the syscall again.
ctrl = ctrlStopAndReinvokeSyscall
} else {
fn := s.Lookup(sysno)
var region *trace.Region // Only non-nil if tracing == true.
if trace.IsEnabled() {
region = trace.StartRegion(t.traceContext, s.LookupName(sysno))
}
if fn != nil {
// Call our syscall implementation.
rval, ctrl, err = fn(t, args)
} else {
// Use the missing function if not found.
rval, err = t.SyscallTable().Missing(t, sysno, args)
}
if region != nil {
region.End()
}
}
if bits.IsOn32(fe, ExternalAfterEnable) && (s.ExternalFilterAfter == nil || s.ExternalFilterAfter(t, sysno, args)) {
t.invokeExternal()
// Don't reinvoke the unix.
}
if bits.IsAnyOn32(fe, StraceEnableBits) {
s.Stracer.SyscallExit(straceContext, t, sysno, rval, err)
}
return
}
// doSyscall is the entry point for an invocation of a system call specified by
// the current state of t's registers.
//
// The syscall path is very hot; avoid defer.
func (t *Task) doSyscall() taskRunState {
// Save value of the register which is clobbered in the following
// t.Arch().SetReturn(-ENOSYS) operation. This is dedicated to arm64.
//
// On x86, register rax was shared by syscall number and return
// value, and at the entry of the syscall handler, the rax was
// saved to regs.orig_rax which was exposed to userspace.
// But on arm64, syscall number was passed through X8, and the X0
// was shared by the first syscall argument and return value. The
// X0 was saved to regs.orig_x0 which was not exposed to userspace.
// So we have to do the same operation here to save the X0 value
// into the task context.
t.Arch().SyscallSaveOrig()
sysno := t.Arch().SyscallNo()
args := t.Arch().SyscallArgs()
// Tracers expect to see this between when the task traps into the kernel
// to perform a syscall and when the syscall is actually invoked.
// This useless-looking temporary is needed because Go.
tmp := uintptr(unix.ENOSYS)
t.Arch().SetReturn(-tmp)
// Check seccomp filters. The nil check is for performance (as seccomp use
// is rare), not needed for correctness.
if t.syscallFilters.Load() != nil {
switch r := t.checkSeccompSyscall(int32(sysno), args, hostarch.Addr(t.Arch().IP())); r {
case linux.SECCOMP_RET_ERRNO, linux.SECCOMP_RET_TRAP:
t.Debugf("Syscall %d: denied by seccomp", sysno)
return (*runSyscallExit)(nil)
case linux.SECCOMP_RET_ALLOW:
// ok
case linux.SECCOMP_RET_KILL_THREAD:
t.Debugf("Syscall %d: killed by seccomp", sysno)
t.PrepareExit(linux.WaitStatusTerminationSignal(linux.SIGSYS))
return (*runExit)(nil)
case linux.SECCOMP_RET_TRACE:
t.Debugf("Syscall %d: stopping for PTRACE_EVENT_SECCOMP", sysno)
return (*runSyscallAfterPtraceEventSeccomp)(nil)
default:
panic(fmt.Sprintf("Unknown seccomp result %d", r))
}
}
return t.doSyscallEnter(sysno, args)
}
type runSyscallAfterPtraceEventSeccomp struct{}
func (*runSyscallAfterPtraceEventSeccomp) execute(t *Task) taskRunState {
if t.killed() {
// "[S]yscall-exit-stop is not generated prior to death by SIGKILL." -
// ptrace(2)
return (*runInterrupt)(nil)
}
sysno := t.Arch().SyscallNo()
// "The tracer can skip the system call by changing the syscall number to
// -1." - Documentation/prctl/seccomp_filter.txt
if sysno == ^uintptr(0) {
return (*runSyscallExit)(nil).execute(t)
}
args := t.Arch().SyscallArgs()
return t.doSyscallEnter(sysno, args)
}
func (t *Task) doSyscallEnter(sysno uintptr, args arch.SyscallArguments) taskRunState {
if next, ok := t.ptraceSyscallEnter(); ok {
return next
}
return t.doSyscallInvoke(sysno, args)
}
// +stateify savable
type runSyscallAfterSyscallEnterStop struct{}
func (*runSyscallAfterSyscallEnterStop) execute(t *Task) taskRunState {
if sig := linux.Signal(t.ptraceCode); sig.IsValid() {
t.tg.signalHandlers.mu.Lock()
t.sendSignalLocked(SignalInfoPriv(sig), false /* group */)
t.tg.signalHandlers.mu.Unlock()
}
if t.killed() {
return (*runInterrupt)(nil)
}
sysno := t.Arch().SyscallNo()
if sysno == ^uintptr(0) {
return (*runSyscallExit)(nil)
}
args := t.Arch().SyscallArgs()
return t.doSyscallInvoke(sysno, args)
}
// +stateify savable
type runSyscallAfterSysemuStop struct{}
func (*runSyscallAfterSysemuStop) execute(t *Task) taskRunState {
if sig := linux.Signal(t.ptraceCode); sig.IsValid() {
t.tg.signalHandlers.mu.Lock()
t.sendSignalLocked(SignalInfoPriv(sig), false /* group */)
t.tg.signalHandlers.mu.Unlock()
}
if t.killed() {
return (*runInterrupt)(nil)
}
return (*runSyscallExit)(nil).execute(t)
}
func (t *Task) doSyscallInvoke(sysno uintptr, args arch.SyscallArguments) taskRunState {
rval, ctrl, err := t.executeSyscall(sysno, args)
if ctrl != nil {
if !ctrl.ignoreReturn {
t.Arch().SetReturn(rval)
}
if ctrl.next != nil {
return ctrl.next
}
} else if err != nil {
t.Arch().SetReturn(uintptr(-ExtractErrno(err, int(sysno))))
t.haveSyscallReturn = true
} else {
t.Arch().SetReturn(rval)
}
return (*runSyscallExit)(nil).execute(t)
}
// +stateify savable
type runSyscallReinvoke struct{}
func (*runSyscallReinvoke) execute(t *Task) taskRunState {
if t.killed() {
// It's possible that since the last execution, the task has
// been forcible killed. Invoking the system call here could
// result in an infinite loop if it is again preempted by an
// external stop and reinvoked.
return (*runInterrupt)(nil)
}
sysno := t.Arch().SyscallNo()
args := t.Arch().SyscallArgs()
return t.doSyscallInvoke(sysno, args)
}
// +stateify savable
type runSyscallExit struct{}
func (*runSyscallExit) execute(t *Task) taskRunState {
t.ptraceSyscallExit()
return (*runApp)(nil)
}
// doVsyscall is the entry point for a vsyscall invocation of syscall sysno, as
// indicated by an execution fault at address addr. doVsyscall returns the
// task's next run state.
func (t *Task) doVsyscall(addr hostarch.Addr, sysno uintptr) taskRunState {
metric.WeirdnessMetric.Increment("vsyscall_count")
// Grab the caller up front, to make sure there's a sensible stack.
caller := t.Arch().Native(uintptr(0))
if _, err := caller.CopyIn(t, hostarch.Addr(t.Arch().Stack())); err != nil {
t.Debugf("vsyscall %d: error reading return address from stack: %v", sysno, err)
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return (*runApp)(nil)
}
// For _vsyscalls_, there is no need to translate System V calling convention
// to syscall ABI because they both use RDI, RSI, and RDX for the first three
// arguments and none of the vsyscalls uses more than two arguments.
args := t.Arch().SyscallArgs()
if t.syscallFilters.Load() != nil {
switch r := t.checkSeccompSyscall(int32(sysno), args, addr); r {
case linux.SECCOMP_RET_ERRNO, linux.SECCOMP_RET_TRAP:
t.Debugf("vsyscall %d, caller %x: denied by seccomp", sysno, t.Arch().Value(caller))
return (*runApp)(nil)
case linux.SECCOMP_RET_ALLOW:
// ok
case linux.SECCOMP_RET_TRACE:
t.Debugf("vsyscall %d, caller %x: stopping for PTRACE_EVENT_SECCOMP", sysno, t.Arch().Value(caller))
return &runVsyscallAfterPtraceEventSeccomp{addr, sysno, caller}
case linux.SECCOMP_RET_KILL_THREAD:
t.Debugf("vsyscall %d: killed by seccomp", sysno)
t.PrepareExit(linux.WaitStatusTerminationSignal(linux.SIGSYS))
return (*runExit)(nil)
default:
panic(fmt.Sprintf("Unknown seccomp result %d", r))
}
}
return t.doVsyscallInvoke(sysno, args, caller)
}
type runVsyscallAfterPtraceEventSeccomp struct {
addr hostarch.Addr
sysno uintptr
caller marshal.Marshallable
}
func (r *runVsyscallAfterPtraceEventSeccomp) execute(t *Task) taskRunState {
if t.killed() {
return (*runInterrupt)(nil)
}
sysno := t.Arch().SyscallNo()
// "... the syscall may not be changed to another system call using the
// orig_rax register. It may only be changed to -1 order [sic] to skip the
// currently emulated call. ... The tracer MUST NOT modify rip or rsp." -
// Documentation/prctl/seccomp_filter.txt. On Linux, changing orig_ax or ip
// causes do_exit(SIGSYS), and changing sp is ignored.
if (sysno != ^uintptr(0) && sysno != r.sysno) || hostarch.Addr(t.Arch().IP()) != r.addr {
t.PrepareExit(linux.WaitStatusTerminationSignal(linux.SIGSYS))
return (*runExit)(nil)
}
if sysno == ^uintptr(0) {
return (*runApp)(nil)
}
return t.doVsyscallInvoke(sysno, t.Arch().SyscallArgs(), r.caller)
}
func (t *Task) doVsyscallInvoke(sysno uintptr, args arch.SyscallArguments, caller marshal.Marshallable) taskRunState {
rval, ctrl, err := t.executeSyscall(sysno, args)
if ctrl != nil {
t.Debugf("vsyscall %d, caller %x: syscall control: %v", sysno, t.Arch().Value(caller), ctrl)
// Set the return value. The stack has already been adjusted.
t.Arch().SetReturn(0)
} else if err == nil {
t.Debugf("vsyscall %d, caller %x: successfully emulated syscall", sysno, t.Arch().Value(caller))
// Set the return value. The stack has already been adjusted.
t.Arch().SetReturn(uintptr(rval))
} else {
t.Debugf("vsyscall %d, caller %x: emulated syscall returned error: %v", sysno, t.Arch().Value(caller), err)
if linuxerr.Equals(linuxerr.EFAULT, err) {
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
// A return is not emulated in this case.
return (*runApp)(nil)
}
t.Arch().SetReturn(uintptr(-ExtractErrno(err, int(sysno))))
}
t.Arch().SetIP(t.Arch().Value(caller))
t.Arch().SetStack(t.Arch().Stack() + uintptr(t.Arch().Width()))
return (*runApp)(nil)
}
// ExtractErrno extracts an integer error number from the error.
// The syscall number is purely for context in the error case. Use -1 if
// syscall number is unknown.
func ExtractErrno(err error, sysno int) int {
switch err := err.(type) {
case nil:
return 0
case unix.Errno:
return int(err)
case *errors.Error:
return int(err.Errno())
case *memmap.BusError:
// Bus errors may generate SIGBUS, but for syscalls they still
// return EFAULT. See case in task_run.go where the fault is
// handled (and the SIGBUS is delivered).
return int(unix.EFAULT)
case *os.PathError:
return ExtractErrno(err.Err, sysno)
case *os.LinkError:
return ExtractErrno(err.Err, sysno)
case *os.SyscallError:
return ExtractErrno(err.Err, sysno)
default:
if errno, ok := linuxerr.TranslateError(err); ok {
return int(errno.Errno())
}
}
panic(fmt.Sprintf("Unknown syscall %d error: %v", sysno, err))
}
|