summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/kernel/task_identity.go
blob: e105eba136ee26850537c5e03b9d83dc46aeeeeb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package kernel

import (
	"gvisor.googlesource.com/gvisor/pkg/abi/linux"
	"gvisor.googlesource.com/gvisor/pkg/sentry/kernel/auth"
	"gvisor.googlesource.com/gvisor/pkg/syserror"
)

// Credentials returns t's credentials.
//
// This value must be considered immutable.
func (t *Task) Credentials() *auth.Credentials {
	t.mu.Lock()
	defer t.mu.Unlock()
	return t.creds
}

// UserNamespace returns the user namespace associated with the task.
func (t *Task) UserNamespace() *auth.UserNamespace {
	t.mu.Lock()
	defer t.mu.Unlock()
	return t.creds.UserNamespace
}

// HasCapabilityIn checks if the task has capability cp in user namespace ns.
func (t *Task) HasCapabilityIn(cp linux.Capability, ns *auth.UserNamespace) bool {
	t.mu.Lock()
	defer t.mu.Unlock()
	return t.creds.HasCapabilityIn(cp, ns)
}

// HasCapability checks if the task has capability cp in its user namespace.
func (t *Task) HasCapability(cp linux.Capability) bool {
	t.mu.Lock()
	defer t.mu.Unlock()
	return t.creds.HasCapability(cp)
}

// SetUID implements the semantics of setuid(2).
func (t *Task) SetUID(uid auth.UID) error {
	// setuid considers -1 to be invalid.
	if !uid.Ok() {
		return syserror.EINVAL
	}
	t.mu.Lock()
	defer t.mu.Unlock()
	kuid := t.creds.UserNamespace.MapToKUID(uid)
	if !kuid.Ok() {
		return syserror.EINVAL
	}
	// "setuid() sets the effective user ID of the calling process. If the
	// effective UID of the caller is root (more precisely: if the caller has
	// the CAP_SETUID capability), the real UID and saved set-user-ID are also
	// set." - setuid(2)
	if t.creds.HasCapability(linux.CAP_SETUID) {
		t.setKUIDsUncheckedLocked(kuid, kuid, kuid)
		return nil
	}
	// "EPERM: The user is not privileged (Linux: does not have the CAP_SETUID
	// capability) and uid does not match the real UID or saved set-user-ID of
	// the calling process."
	if kuid != t.creds.RealKUID && kuid != t.creds.SavedKUID {
		return syserror.EPERM
	}
	t.setKUIDsUncheckedLocked(t.creds.RealKUID, kuid, t.creds.SavedKUID)
	return nil
}

// SetREUID implements the semantics of setreuid(2).
func (t *Task) SetREUID(r, e auth.UID) error {
	t.mu.Lock()
	defer t.mu.Unlock()
	// "Supplying a value of -1 for either the real or effective user ID forces
	// the system to leave that ID unchanged." - setreuid(2)
	newR := t.creds.RealKUID
	if r.Ok() {
		newR = t.creds.UserNamespace.MapToKUID(r)
		if !newR.Ok() {
			return syserror.EINVAL
		}
	}
	newE := t.creds.EffectiveKUID
	if e.Ok() {
		newE = t.creds.UserNamespace.MapToKUID(e)
		if !newE.Ok() {
			return syserror.EINVAL
		}
	}
	if !t.creds.HasCapability(linux.CAP_SETUID) {
		// "Unprivileged processes may only set the effective user ID to the
		// real user ID, the effective user ID, or the saved set-user-ID."
		if newE != t.creds.RealKUID && newE != t.creds.EffectiveKUID && newE != t.creds.SavedKUID {
			return syserror.EPERM
		}
		// "Unprivileged users may only set the real user ID to the real user
		// ID or the effective user ID."
		if newR != t.creds.RealKUID && newR != t.creds.EffectiveKUID {
			return syserror.EPERM
		}
	}
	// "If the real user ID is set (i.e., ruid is not -1) or the effective user
	// ID is set to a value not equal to the previous real user ID, the saved
	// set-user-ID will be set to the new effective user ID."
	newS := t.creds.SavedKUID
	if r.Ok() || (e.Ok() && newE != t.creds.EffectiveKUID) {
		newS = newE
	}
	t.setKUIDsUncheckedLocked(newR, newE, newS)
	return nil
}

// SetRESUID implements the semantics of the setresuid(2) syscall.
func (t *Task) SetRESUID(r, e, s auth.UID) error {
	t.mu.Lock()
	defer t.mu.Unlock()
	// "Unprivileged user processes may change the real UID, effective UID, and
	// saved set-user-ID, each to one of: the current real UID, the current
	// effective UID or the current saved set-user-ID. Privileged processes (on
	// Linux, those having the CAP_SETUID capability) may set the real UID,
	// effective UID, and saved set-user-ID to arbitrary values. If one of the
	// arguments equals -1, the corresponding value is not changed." -
	// setresuid(2)
	var err error
	newR := t.creds.RealKUID
	if r.Ok() {
		newR, err = t.creds.UseUID(r)
		if err != nil {
			return err
		}
	}
	newE := t.creds.EffectiveKUID
	if e.Ok() {
		newE, err = t.creds.UseUID(e)
		if err != nil {
			return err
		}
	}
	newS := t.creds.SavedKUID
	if s.Ok() {
		newS, err = t.creds.UseUID(s)
		if err != nil {
			return err
		}
	}
	t.setKUIDsUncheckedLocked(newR, newE, newS)
	return nil
}

// Preconditions: t.mu must be locked.
func (t *Task) setKUIDsUncheckedLocked(newR, newE, newS auth.KUID) {
	root := t.creds.UserNamespace.MapToKUID(auth.RootUID)
	oldR, oldE, oldS := t.creds.RealKUID, t.creds.EffectiveKUID, t.creds.SavedKUID
	t.creds = t.creds.Fork() // See doc for creds.
	t.creds.RealKUID, t.creds.EffectiveKUID, t.creds.SavedKUID = newR, newE, newS

	// "1. If one or more of the real, effective or saved set user IDs was
	// previously 0, and as a result of the UID changes all of these IDs have a
	// nonzero value, then all capabilities are cleared from the permitted and
	// effective capability sets." - capabilities(7)
	if (oldR == root || oldE == root || oldS == root) && (newR != root && newE != root && newS != root) {
		// prctl(2): "PR_SET_KEEPCAP: Set the state of the calling thread's
		// "keep capabilities" flag, which determines whether the thread's permitted
		// capability set is cleared when a change is made to the
		// thread's user IDs such that the thread's real UID, effective
		// UID, and saved set-user-ID all become nonzero when at least
		// one of them previously had the value 0.  By default, the
		// permitted capability set is cleared when such a change is
		// made; setting the "keep capabilities" flag prevents it from
		// being cleared." (A thread's effective capability set is always
		// cleared when such a credential change is made,
		// regardless of the setting of the "keep capabilities" flag.)
		if !t.creds.KeepCaps {
			t.creds.PermittedCaps = 0
			t.creds.EffectiveCaps = 0
		}
	}
	// """
	// 2. If the effective user ID is changed from 0 to nonzero, then all
	// capabilities are cleared from the effective set.
	//
	// 3. If the effective user ID is changed from nonzero to 0, then the
	// permitted set is copied to the effective set.
	// """
	if oldE == root && newE != root {
		t.creds.EffectiveCaps = 0
	} else if oldE != root && newE == root {
		t.creds.EffectiveCaps = t.creds.PermittedCaps
	}
	// "4. If the filesystem user ID is changed from 0 to nonzero (see
	// setfsuid(2)), then the following capabilities are cleared from the
	// effective set: ..."
	// (filesystem UIDs aren't implemented, nor are any of the capabilities in
	// question)

	// Not documented, but compare Linux's kernel/cred.c:commit_creds().
	if oldE != newE {
		t.parentDeathSignal = 0
	}
}

// SetGID implements the semantics of setgid(2).
func (t *Task) SetGID(gid auth.GID) error {
	if !gid.Ok() {
		return syserror.EINVAL
	}
	t.mu.Lock()
	defer t.mu.Unlock()
	kgid := t.creds.UserNamespace.MapToKGID(gid)
	if !kgid.Ok() {
		return syserror.EINVAL
	}
	if t.creds.HasCapability(linux.CAP_SETGID) {
		t.setKGIDsUncheckedLocked(kgid, kgid, kgid)
		return nil
	}
	if kgid != t.creds.RealKGID && kgid != t.creds.SavedKGID {
		return syserror.EPERM
	}
	t.setKGIDsUncheckedLocked(t.creds.RealKGID, kgid, t.creds.SavedKGID)
	return nil
}

// SetREGID implements the semantics of setregid(2).
func (t *Task) SetREGID(r, e auth.GID) error {
	t.mu.Lock()
	defer t.mu.Unlock()
	newR := t.creds.RealKGID
	if r.Ok() {
		newR = t.creds.UserNamespace.MapToKGID(r)
		if !newR.Ok() {
			return syserror.EINVAL
		}
	}
	newE := t.creds.EffectiveKGID
	if e.Ok() {
		newE = t.creds.UserNamespace.MapToKGID(e)
		if !newE.Ok() {
			return syserror.EINVAL
		}
	}
	if !t.creds.HasCapability(linux.CAP_SETGID) {
		if newE != t.creds.RealKGID && newE != t.creds.EffectiveKGID && newE != t.creds.SavedKGID {
			return syserror.EPERM
		}
		if newR != t.creds.RealKGID && newR != t.creds.EffectiveKGID {
			return syserror.EPERM
		}
	}
	newS := t.creds.SavedKGID
	if r.Ok() || (e.Ok() && newE != t.creds.EffectiveKGID) {
		newS = newE
	}
	t.setKGIDsUncheckedLocked(newR, newE, newS)
	return nil
}

// SetRESGID implements the semantics of the setresgid(2) syscall.
func (t *Task) SetRESGID(r, e, s auth.GID) error {
	t.mu.Lock()
	defer t.mu.Unlock()
	var err error
	newR := t.creds.RealKGID
	if r.Ok() {
		newR, err = t.creds.UseGID(r)
		if err != nil {
			return err
		}
	}
	newE := t.creds.EffectiveKGID
	if e.Ok() {
		newE, err = t.creds.UseGID(e)
		if err != nil {
			return err
		}
	}
	newS := t.creds.SavedKGID
	if s.Ok() {
		newS, err = t.creds.UseGID(s)
		if err != nil {
			return err
		}
	}
	t.setKGIDsUncheckedLocked(newR, newE, newS)
	return nil
}

func (t *Task) setKGIDsUncheckedLocked(newR, newE, newS auth.KGID) {
	oldE := t.creds.EffectiveKGID
	t.creds = t.creds.Fork() // See doc for creds.
	t.creds.RealKGID, t.creds.EffectiveKGID, t.creds.SavedKGID = newR, newE, newS

	// Not documented, but compare Linux's kernel/cred.c:commit_creds().
	if oldE != newE {
		t.parentDeathSignal = 0
	}
}

// SetExtraGIDs attempts to change t's supplemental groups. All IDs are
// interpreted as being in t's user namespace.
func (t *Task) SetExtraGIDs(gids []auth.GID) error {
	t.mu.Lock()
	defer t.mu.Unlock()
	if !t.creds.HasCapability(linux.CAP_SETGID) {
		return syserror.EPERM
	}
	kgids := make([]auth.KGID, len(gids))
	for i, gid := range gids {
		kgid := t.creds.UserNamespace.MapToKGID(gid)
		if !kgid.Ok() {
			return syserror.EINVAL
		}
		kgids[i] = kgid
	}
	t.creds = t.creds.Fork() // See doc for creds.
	t.creds.ExtraKGIDs = kgids
	return nil
}

// SetCapabilitySets attempts to change t's permitted, inheritable, and
// effective capability sets.
func (t *Task) SetCapabilitySets(permitted, inheritable, effective auth.CapabilitySet) error {
	t.mu.Lock()
	defer t.mu.Unlock()
	// "Permitted: This is a limiting superset for the effective capabilities
	// that the thread may assume." - capabilities(7)
	if effective & ^permitted != 0 {
		return syserror.EPERM
	}
	// "It is also a limiting superset for the capabilities that may be added
	// to the inheritable set by a thread that does not have the CAP_SETPCAP
	// capability in its effective set."
	if !t.creds.HasCapability(linux.CAP_SETPCAP) && (inheritable & ^(t.creds.InheritableCaps|t.creds.PermittedCaps) != 0) {
		return syserror.EPERM
	}
	// "If a thread drops a capability from its permitted set, it can never
	// reacquire that capability (unless it execve(2)s ..."
	if permitted & ^t.creds.PermittedCaps != 0 {
		return syserror.EPERM
	}
	// "... if a capability is not in the bounding set, then a thread can't add
	// this capability to its inheritable set, even if it was in its permitted
	// capabilities ..."
	if inheritable & ^(t.creds.InheritableCaps|t.creds.BoundingCaps) != 0 {
		return syserror.EPERM
	}
	t.creds = t.creds.Fork() // See doc for creds.
	t.creds.PermittedCaps = permitted
	t.creds.InheritableCaps = inheritable
	t.creds.EffectiveCaps = effective
	return nil
}

// DropBoundingCapability attempts to drop capability cp from t's capability
// bounding set.
func (t *Task) DropBoundingCapability(cp linux.Capability) error {
	t.mu.Lock()
	defer t.mu.Unlock()
	if !t.creds.HasCapability(linux.CAP_SETPCAP) {
		return syserror.EPERM
	}
	t.creds = t.creds.Fork() // See doc for creds.
	t.creds.BoundingCaps &^= auth.CapabilitySetOf(cp)
	return nil
}

// SetUserNamespace attempts to move c into ns.
func (t *Task) SetUserNamespace(ns *auth.UserNamespace) error {
	t.mu.Lock()
	defer t.mu.Unlock()

	// "A process reassociating itself with a user namespace must have the
	// CAP_SYS_ADMIN capability in the target user namespace." - setns(2)
	//
	// If t just created ns, then t.creds is guaranteed to have CAP_SYS_ADMIN
	// in ns (by rule 3 in auth.Credentials.HasCapability).
	if !t.creds.HasCapabilityIn(linux.CAP_SYS_ADMIN, ns) {
		return syserror.EPERM
	}

	t.creds = t.creds.Fork() // See doc for creds.
	t.creds.UserNamespace = ns
	// "The child process created by clone(2) with the CLONE_NEWUSER flag
	// starts out with a complete set of capabilities in the new user
	// namespace. Likewise, a process that creates a new user namespace using
	// unshare(2) or joins an existing user namespace using setns(2) gains a
	// full set of capabilities in that namespace."
	t.creds.PermittedCaps = auth.AllCapabilities
	t.creds.InheritableCaps = 0
	t.creds.EffectiveCaps = auth.AllCapabilities
	t.creds.BoundingCaps = auth.AllCapabilities
	// "A call to clone(2), unshare(2), or setns(2) using the CLONE_NEWUSER
	// flag sets the "securebits" flags (see capabilities(7)) to their default
	// values (all flags disabled) in the child (for clone(2)) or caller (for
	// unshare(2), or setns(2)." - user_namespaces(7)
	t.creds.KeepCaps = false

	return nil
}

// SetKeepCaps will set the keep capabilities flag PR_SET_KEEPCAPS.
func (t *Task) SetKeepCaps(k bool) {
	t.mu.Lock()
	defer t.mu.Unlock()
	t.creds = t.creds.Fork() // See doc for creds.
	t.creds.KeepCaps = k
}

// updateCredsForExec updates t.creds to reflect an execve().
//
// NOTE: We currently do not implement privileged executables
// (set-user/group-ID bits and file capabilities). This allows us to make a lot
// of simplifying assumptions:
//
// - We assume the no_new_privs bit (set by prctl(SET_NO_NEW_PRIVS)), which
// disables the features we don't support anyway, is always set. This
// drastically simplifies this function.
//
// - We don't implement AT_SECURE, because no_new_privs always being set means
// that the conditions that require AT_SECURE never arise. (Compare Linux's
// security/commoncap.c:cap_bprm_set_creds() and cap_bprm_secureexec().)
//
// - We don't check for CAP_SYS_ADMIN in prctl(PR_SET_SECCOMP), since
// seccomp-bpf is also allowed if the task has no_new_privs set.
//
// - Task.ptraceAttach does not serialize with execve as it does in Linux,
// since no_new_privs being set has the same effect as the presence of an
// unprivileged tracer.
//
// Preconditions: t.mu must be locked.
func (t *Task) updateCredsForExecLocked() {
	// """
	// During an execve(2), the kernel calculates the new capabilities of
	// the process using the following algorithm:
	//
	//     P'(permitted) = (P(inheritable) & F(inheritable)) |
	//                     (F(permitted) & cap_bset)
	//
	//     P'(effective) = F(effective) ? P'(permitted) : 0
	//
	//     P'(inheritable) = P(inheritable)    [i.e., unchanged]
	//
	// where:
	//
	//     P         denotes the value of a thread capability set before the
	//               execve(2)
	//
	//     P'        denotes the value of a thread capability set after the
	//               execve(2)
	//
	//     F         denotes a file capability set
	//
	//     cap_bset  is the value of the capability bounding set
	//
	// ...
	//
	// In order to provide an all-powerful root using capability sets, during
	// an execve(2):
	//
	// 1. If a set-user-ID-root program is being executed, or the real user ID
	// of the process is 0 (root) then the file inheritable and permitted sets
	// are defined to be all ones (i.e. all capabilities enabled).
	//
	// 2. If a set-user-ID-root program is being executed, then the file
	// effective bit is defined to be one (enabled).
	//
	// The upshot of the above rules, combined with the capabilities
	// transformations described above, is that when a process execve(2)s a
	// set-user-ID-root program, or when a process with an effective UID of 0
	// execve(2)s a program, it gains all capabilities in its permitted and
	// effective capability sets, except those masked out by the capability
	// bounding set.
	// """ - capabilities(7)
	// (ambient capability sets omitted)
	//
	// As the last paragraph implies, the case of "a set-user-ID root program
	// is being executed" also includes the case where (namespace) root is
	// executing a non-set-user-ID program; the actual check is just based on
	// the effective user ID.
	var newPermitted auth.CapabilitySet // since F(inheritable) == F(permitted) == 0
	fileEffective := false
	root := t.creds.UserNamespace.MapToKUID(auth.RootUID)
	if t.creds.EffectiveKUID == root || t.creds.RealKUID == root {
		newPermitted = t.creds.InheritableCaps | t.creds.BoundingCaps
		if t.creds.EffectiveKUID == root {
			fileEffective = true
		}
	}

	t.creds = t.creds.Fork() // See doc for creds.

	// Now we enter poorly-documented, somewhat confusing territory. (The
	// accompanying comment in Linux's security/commoncap.c:cap_bprm_set_creds
	// is not very helpful.) My reading of it is:
	//
	// If at least one of the following is true:
	//
	// A1. The execing task is ptraced, and the tracer did not have
	// CAP_SYS_PTRACE in the execing task's user namespace at the time of
	// PTRACE_ATTACH.
	//
	// A2. The execing task shares its FS context with at least one task in
	// another thread group.
	//
	// A3. The execing task has no_new_privs set.
	//
	// AND at least one of the following is true:
	//
	// B1. The new effective user ID (which may come from set-user-ID, or be the
	// execing task's existing effective user ID) is not equal to the task's
	// real UID.
	//
	// B2. The new effective group ID (which may come from set-group-ID, or be
	// the execing task's existing effective group ID) is not equal to the
	// task's real GID.
	//
	// B3. The new permitted capability set contains capabilities not in the
	// task's permitted capability set.
	//
	// Then:
	//
	// C1. Limit the new permitted capability set to the task's permitted
	// capability set.
	//
	// C2. If either the task does not have CAP_SETUID in its user namespace, or
	// the task has no_new_privs set, force the new effective UID and GID to
	// the task's real UID and GID.
	//
	// But since no_new_privs is always set (A3 is always true), this becomes
	// much simpler. If B1 and B2 are false, C2 is a no-op. If B3 is false, C1
	// is a no-op. So we can just do C1 and C2 unconditionally.
	if t.creds.EffectiveKUID != t.creds.RealKUID || t.creds.EffectiveKGID != t.creds.RealKGID {
		t.creds.EffectiveKUID = t.creds.RealKUID
		t.creds.EffectiveKGID = t.creds.RealKGID
		t.parentDeathSignal = 0
	}
	// (Saved set-user-ID is always set to the new effective user ID, and saved
	// set-group-ID is always set to the new effective group ID, regardless of
	// the above.)
	t.creds.SavedKUID = t.creds.RealKUID
	t.creds.SavedKGID = t.creds.RealKGID
	t.creds.PermittedCaps &= newPermitted
	if fileEffective {
		t.creds.EffectiveCaps = t.creds.PermittedCaps
	} else {
		t.creds.EffectiveCaps = 0
	}

	// prctl(2): The "keep capabilities" value will be reset to 0 on subsequent
	// calls to execve(2).
	t.creds.KeepCaps = false

	// "The bounding set is inherited at fork(2) from the thread's parent, and
	// is preserved across an execve(2)". So we're done.
}