1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
import (
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/marshal/primitive"
"gvisor.dev/gvisor/pkg/sentry/kernel/futex"
"gvisor.dev/gvisor/pkg/usermem"
)
// Futex returns t's futex manager.
//
// Preconditions: The caller must be running on the task goroutine, or t.mu
// must be locked.
func (t *Task) Futex() *futex.Manager {
return t.image.fu
}
// SwapUint32 implements futex.Target.SwapUint32.
func (t *Task) SwapUint32(addr usermem.Addr, new uint32) (uint32, error) {
return t.MemoryManager().SwapUint32(t, addr, new, usermem.IOOpts{
AddressSpaceActive: true,
})
}
// CompareAndSwapUint32 implements futex.Target.CompareAndSwapUint32.
func (t *Task) CompareAndSwapUint32(addr usermem.Addr, old, new uint32) (uint32, error) {
return t.MemoryManager().CompareAndSwapUint32(t, addr, old, new, usermem.IOOpts{
AddressSpaceActive: true,
})
}
// LoadUint32 implements futex.Target.LoadUint32.
func (t *Task) LoadUint32(addr usermem.Addr) (uint32, error) {
return t.MemoryManager().LoadUint32(t, addr, usermem.IOOpts{
AddressSpaceActive: true,
})
}
// GetSharedKey implements futex.Target.GetSharedKey.
func (t *Task) GetSharedKey(addr usermem.Addr) (futex.Key, error) {
return t.MemoryManager().GetSharedFutexKey(t, addr)
}
// GetRobustList sets the robust futex list for the task.
func (t *Task) GetRobustList() usermem.Addr {
t.mu.Lock()
addr := t.robustList
t.mu.Unlock()
return addr
}
// SetRobustList sets the robust futex list for the task.
func (t *Task) SetRobustList(addr usermem.Addr) {
t.mu.Lock()
t.robustList = addr
t.mu.Unlock()
}
// exitRobustList walks the robust futex list, marking locks dead and notifying
// wakers. It corresponds to Linux's exit_robust_list(). Following Linux,
// errors are silently ignored.
func (t *Task) exitRobustList() {
t.mu.Lock()
addr := t.robustList
t.robustList = 0
t.mu.Unlock()
if addr == 0 {
return
}
var rl linux.RobustListHead
if _, err := rl.CopyIn(t, usermem.Addr(addr)); err != nil {
return
}
next := primitive.Uint64(rl.List)
done := 0
var pendingLockAddr usermem.Addr
if rl.ListOpPending != 0 {
pendingLockAddr = usermem.Addr(rl.ListOpPending + rl.FutexOffset)
}
// Wake up normal elements.
for usermem.Addr(next) != addr {
// We traverse to the next element of the list before we
// actually wake anything. This prevents the race where waking
// this futex causes a modification of the list.
thisLockAddr := usermem.Addr(uint64(next) + rl.FutexOffset)
// Try to decode the next element in the list before waking the
// current futex. But don't check the error until after we've
// woken the current futex. Linux does it in this order too
_, nextErr := next.CopyIn(t, usermem.Addr(next))
// Wakeup the current futex if it's not pending.
if thisLockAddr != pendingLockAddr {
t.wakeRobustListOne(thisLockAddr)
}
// If there was an error copying the next futex, we must bail.
if nextErr != nil {
break
}
// This is a user structure, so it could be a massive list, or
// even contain a loop if they are trying to mess with us. We
// cap traversal to prevent that.
done++
if done >= linux.ROBUST_LIST_LIMIT {
break
}
}
// Is there a pending entry to wake?
if pendingLockAddr != 0 {
t.wakeRobustListOne(pendingLockAddr)
}
}
// wakeRobustListOne wakes a single futex from the robust list.
func (t *Task) wakeRobustListOne(addr usermem.Addr) {
// Bit 0 in address signals PI futex.
pi := addr&1 == 1
addr = addr &^ 1
// Load the futex.
f, err := t.LoadUint32(addr)
if err != nil {
// Can't read this single value? Ignore the problem.
// We can wake the other futexes in the list.
return
}
tid := uint32(t.ThreadID())
for {
// Is this held by someone else?
if f&linux.FUTEX_TID_MASK != tid {
return
}
// This thread is dying and it's holding this futex. We need to
// set the owner died bit and wake up any waiters.
newF := (f & linux.FUTEX_WAITERS) | linux.FUTEX_OWNER_DIED
if curF, err := t.CompareAndSwapUint32(addr, f, newF); err != nil {
return
} else if curF != f {
// Futex changed out from under us. Try again...
f = curF
continue
}
// Wake waiters if there are any.
if f&linux.FUTEX_WAITERS != 0 {
private := f&linux.FUTEX_PRIVATE_FLAG != 0
if pi {
t.Futex().UnlockPI(t, addr, tid, private)
return
}
t.Futex().Wake(t, addr, private, linux.FUTEX_BITSET_MATCH_ANY, 1)
}
// Done.
return
}
}
|