1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
|
// Copyright 2018 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
// This file implements the task exit cycle:
//
// - Tasks are asynchronously requested to exit with Task.Kill.
//
// - When able, the task goroutine enters the exit path starting from state
// runExit.
//
// - Other tasks observe completed exits with Task.Wait (which implements the
// wait*() family of syscalls).
import (
"errors"
"fmt"
"strconv"
"gvisor.googlesource.com/gvisor/pkg/abi/linux"
"gvisor.googlesource.com/gvisor/pkg/sentry/arch"
"gvisor.googlesource.com/gvisor/pkg/sentry/kernel/auth"
"gvisor.googlesource.com/gvisor/pkg/syserror"
"gvisor.googlesource.com/gvisor/pkg/waiter"
)
// An ExitStatus is a value communicated from an exiting task or thread group
// to the party that reaps it.
//
// +stateify savable
type ExitStatus struct {
// Code is the numeric value passed to the call to exit or exit_group that
// caused the exit. If the exit was not caused by such a call, Code is 0.
Code int
// Signo is the signal that caused the exit. If the exit was not caused by
// a signal, Signo is 0.
Signo int
}
// Signaled returns true if the ExitStatus indicates that the exiting task or
// thread group was killed by a signal.
func (es ExitStatus) Signaled() bool {
return es.Signo != 0
}
// Status returns the numeric representation of the ExitStatus returned by e.g.
// the wait4() system call.
func (es ExitStatus) Status() uint32 {
return ((uint32(es.Code) & 0xff) << 8) | (uint32(es.Signo) & 0xff)
}
// ShellExitCode returns the numeric exit code that Bash would return for an
// exit status of es.
func (es ExitStatus) ShellExitCode() int {
if es.Signaled() {
return 128 + es.Signo
}
return es.Code
}
// TaskExitState represents a step in the task exit path.
//
// "Exiting" and "exited" are often ambiguous; prefer to name specific states.
type TaskExitState int
const (
// TaskExitNone indicates that the task has not begun exiting.
TaskExitNone TaskExitState = iota
// TaskExitInitiated indicates that the task goroutine has entered the exit
// path, and the task is no longer eligible to participate in group stops
// or group signal handling. TaskExitInitiated is analogous to Linux's
// PF_EXITING.
TaskExitInitiated
// TaskExitZombie indicates that the task has released its resources, and
// the task no longer prevents a sibling thread from completing execve.
TaskExitZombie
// TaskExitDead indicates that the task's thread IDs have been released,
// and the task no longer prevents its thread group leader from being
// reaped. ("Reaping" refers to the transitioning of a task from
// TaskExitZombie to TaskExitDead.)
TaskExitDead
)
// String implements fmt.Stringer.
func (t TaskExitState) String() string {
switch t {
case TaskExitNone:
return "TaskExitNone"
case TaskExitInitiated:
return "TaskExitInitiated"
case TaskExitZombie:
return "TaskExitZombie"
case TaskExitDead:
return "TaskExitDead"
default:
return strconv.Itoa(int(t))
}
}
// killLocked marks t as killed by enqueueing a SIGKILL, without causing the
// thread-group-affecting side effects SIGKILL usually has.
//
// Preconditions: The signal mutex must be locked.
func (t *Task) killLocked() {
// Clear killable stops.
if t.stop != nil && t.stop.Killable() {
t.endInternalStopLocked()
}
t.groupStopRequired = false
t.pendingSignals.enqueue(&arch.SignalInfo{
Signo: int32(linux.SIGKILL),
// Linux just sets SIGKILL in the pending signal bitmask without
// enqueueing an actual siginfo, such that
// kernel/signal.c:collect_signal() initializes si_code to SI_USER.
Code: arch.SignalInfoUser,
})
t.interrupt()
}
// killed returns true if t has a SIGKILL pending. killed is analogous to
// Linux's fatal_signal_pending().
//
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) killed() bool {
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
return t.killedLocked()
}
func (t *Task) killedLocked() bool {
return t.pendingSignals.pendingSet&linux.SignalSetOf(linux.SIGKILL) != 0
}
// PrepareExit indicates an exit with status es.
//
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) PrepareExit(es ExitStatus) {
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
t.exitStatus = es
}
// PrepareGroupExit indicates a group exit with status es to t's thread group.
//
// PrepareGroupExit is analogous to Linux's do_group_exit(), except that it
// does not tail-call do_exit(), except that it *does* set Task.exitStatus.
// (Linux does not do so until within do_exit(), since it reuses exit_code for
// ptrace.)
//
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) PrepareGroupExit(es ExitStatus) {
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
if t.tg.exiting || t.tg.execing != nil {
// Note that if t.tg.exiting is false but t.tg.execing is not nil, i.e.
// this "group exit" is being executed by the killed sibling of an
// execing task, then Task.Execve never set t.tg.exitStatus, so it's
// still the zero value. This is consistent with Linux, both in intent
// ("all other threads ... report death as if they exited via _exit(2)
// with exit code 0" - ptrace(2), "execve under ptrace") and in
// implementation (compare fs/exec.c:de_thread() =>
// kernel/signal.c:zap_other_threads() and
// kernel/exit.c:do_group_exit() =>
// include/linux/sched.h:signal_group_exit()).
t.exitStatus = t.tg.exitStatus
return
}
t.tg.exiting = true
t.tg.exitStatus = es
t.exitStatus = es
for sibling := t.tg.tasks.Front(); sibling != nil; sibling = sibling.Next() {
if sibling != t {
sibling.killLocked()
}
}
}
// Kill requests that all tasks in ts exit as if group exiting with status es.
// Kill does not wait for tasks to exit.
//
// Kill has no analogue in Linux; it's provided for save/restore only.
func (ts *TaskSet) Kill(es ExitStatus) {
ts.mu.Lock()
defer ts.mu.Unlock()
ts.Root.exiting = true
for t := range ts.Root.tids {
t.tg.signalHandlers.mu.Lock()
if !t.tg.exiting {
t.tg.exiting = true
t.tg.exitStatus = es
}
t.killLocked()
t.tg.signalHandlers.mu.Unlock()
}
}
// advanceExitStateLocked checks that t's current exit state is oldExit, then
// sets it to newExit. If t's current exit state is not oldExit,
// advanceExitStateLocked panics.
//
// Preconditions: The TaskSet mutex must be locked.
func (t *Task) advanceExitStateLocked(oldExit, newExit TaskExitState) {
if t.exitState != oldExit {
panic(fmt.Sprintf("Transitioning from exit state %v to %v: unexpected preceding state %v", oldExit, newExit, t.exitState))
}
t.Debugf("Transitioning from exit state %v to %v", oldExit, newExit)
t.exitState = newExit
}
// runExit is the entry point into the task exit path.
//
// +stateify savable
type runExit struct{}
func (*runExit) execute(t *Task) taskRunState {
t.ptraceExit()
return (*runExitMain)(nil)
}
// +stateify savable
type runExitMain struct{}
func (*runExitMain) execute(t *Task) taskRunState {
lastExiter := t.exitThreadGroup()
// If the task has a cleartid, and the thread group wasn't killed by a
// signal, handle that before releasing the MM.
if t.cleartid != 0 {
t.tg.signalHandlers.mu.Lock()
signaled := t.tg.exiting && t.tg.exitStatus.Signaled()
t.tg.signalHandlers.mu.Unlock()
if !signaled {
if _, err := t.CopyOut(t.cleartid, ThreadID(0)); err == nil {
t.Futex().Wake(uintptr(t.cleartid), ^uint32(0), 1)
}
// If the CopyOut fails, there's nothing we can do.
}
}
// Deactivate the address space before releasing the MM.
t.Deactivate()
// Update the max resident set size before releasing t.tc.mm.
t.tg.pidns.owner.mu.Lock()
t.updateRSSLocked()
t.tg.pidns.owner.mu.Unlock()
// Release all of the task's resources.
t.mu.Lock()
t.tc.release()
t.tr.release()
t.mu.Unlock()
t.unstopVforkParent()
// If this is the last task to exit from the thread group, release the
// thread group's resources.
if lastExiter {
t.tg.release()
}
// Detach tracees.
t.exitPtrace()
// Reparent the task's children.
t.exitChildren()
// Don't tail-call runExitNotify, as exitChildren may have initiated a stop
// to wait for a PID namespace to die.
return (*runExitNotify)(nil)
}
// exitThreadGroup transitions t to TaskExitInitiated, indicating to t's thread
// group that it is no longer eligible to participate in group activities. It
// returns true if t is the last task in its thread group to call
// exitThreadGroup.
func (t *Task) exitThreadGroup() bool {
t.tg.pidns.owner.mu.Lock()
defer t.tg.pidns.owner.mu.Unlock()
t.tg.signalHandlers.mu.Lock()
// Can't defer unlock: see below.
t.advanceExitStateLocked(TaskExitNone, TaskExitInitiated)
t.tg.activeTasks--
last := t.tg.activeTasks == 0
// Ensure that someone will handle the signals we can't.
t.setSignalMaskLocked(^linux.SignalSet(0))
// Check if this task's exit interacts with an initiated group stop.
if t.tg.groupStopPhase != groupStopInitiated {
t.tg.signalHandlers.mu.Unlock()
return last
}
if t.groupStopAcknowledged {
// Un-acknowledge the group stop.
t.tg.groupStopCount--
t.groupStopAcknowledged = false
// If the group stop wasn't complete before, then there is still at
// least one other task that hasn't acknowledged the group stop, so
// it is still not complete now.
t.tg.signalHandlers.mu.Unlock()
return last
}
if t.tg.groupStopCount != t.tg.activeTasks {
t.tg.signalHandlers.mu.Unlock()
return last
}
t.Debugf("Completing group stop")
t.tg.groupStopPhase = groupStopComplete
t.tg.groupStopWaitable = true
sig := t.tg.groupStopSignal
t.tg.groupContNotify = false
t.tg.groupContWaitable = false
// signalStop must be called with t's signal mutex unlocked.
t.tg.signalHandlers.mu.Unlock()
if t.tg.leader.parent != nil {
t.tg.leader.parent.signalStop(t, arch.CLD_STOPPED, int32(sig))
t.tg.leader.parent.tg.eventQueue.Notify(EventChildGroupStop)
}
return last
}
func (t *Task) exitChildren() {
t.tg.pidns.owner.mu.Lock()
defer t.tg.pidns.owner.mu.Unlock()
newParent := t.findReparentTargetLocked()
if newParent == nil {
// "If the init process of a PID namespace terminates, the kernel
// terminates all of the processes in the namespace via a SIGKILL
// signal." - pid_namespaces(7)
t.Debugf("Init process terminating, killing namespace")
t.tg.pidns.exiting = true
for other := range t.tg.pidns.tids {
if other.tg != t.tg {
other.tg.signalHandlers.mu.Lock()
other.sendSignalLocked(&arch.SignalInfo{
Signo: int32(linux.SIGKILL),
}, false /* group */)
other.tg.signalHandlers.mu.Unlock()
}
}
// TODO: The init process waits for all processes in the
// namespace to exit before completing its own exit
// (kernel/pid_namespace.c:zap_pid_ns_processes()). Stop until all
// other tasks in the namespace are dead, except possibly for this
// thread group's leader (which can't be reaped until this task exits).
}
// This is correct even if newParent is nil (it ensures that children don't
// wait for a parent to reap them.)
for c := range t.children {
if sig := c.ParentDeathSignal(); sig != 0 {
siginfo := &arch.SignalInfo{
Signo: int32(sig),
Code: arch.SignalInfoUser,
}
siginfo.SetPid(int32(c.tg.pidns.tids[t]))
siginfo.SetUid(int32(t.Credentials().RealKUID.In(c.UserNamespace()).OrOverflow()))
c.tg.signalHandlers.mu.Lock()
c.sendSignalLocked(siginfo, true /* group */)
c.tg.signalHandlers.mu.Unlock()
}
c.reparentLocked(newParent)
if newParent != nil {
newParent.children[c] = struct{}{}
}
}
}
// findReparentTargetLocked returns the task to which t's children should be
// reparented. If no such task exists, findNewParentLocked returns nil.
//
// Preconditions: The TaskSet mutex must be locked.
func (t *Task) findReparentTargetLocked() *Task {
// Reparent to any sibling in the same thread group that hasn't begun
// exiting.
if t2 := t.tg.anyNonExitingTaskLocked(); t2 != nil {
return t2
}
// "A child process that is orphaned within the namespace will be
// reparented to [the init process for the namespace] ..." -
// pid_namespaces(7)
if init := t.tg.pidns.tasks[InitTID]; init != nil {
return init.tg.anyNonExitingTaskLocked()
}
return nil
}
func (tg *ThreadGroup) anyNonExitingTaskLocked() *Task {
for t := tg.tasks.Front(); t != nil; t = t.Next() {
if t.exitState == TaskExitNone {
return t
}
}
return nil
}
// reparentLocked changes t's parent. The new parent may be nil.
//
// Preconditions: The TaskSet mutex must be locked for writing.
func (t *Task) reparentLocked(parent *Task) {
oldParent := t.parent
t.parent = parent
// If a thread group leader's parent changes, reset the thread group's
// termination signal to SIGCHLD and re-check exit notification. (Compare
// kernel/exit.c:reparent_leader().)
if t != t.tg.leader {
return
}
if oldParent == nil && parent == nil {
return
}
if oldParent != nil && parent != nil && oldParent.tg == parent.tg {
return
}
t.tg.terminationSignal = linux.SIGCHLD
if t.exitParentNotified && !t.exitParentAcked {
t.exitParentNotified = false
t.exitNotifyLocked(false)
}
}
// When a task exits, other tasks in the system, notably the task's parent and
// ptracer, may want to be notified. The exit notification system ensures that
// interested tasks receive signals and/or are woken from blocking calls to
// wait*() syscalls; these notifications must be resolved before exiting tasks
// can be reaped and disappear from the system.
//
// Each task may have a parent task and/or a tracer task. If both a parent and
// a tracer exist, they may be the same task, different tasks in the same
// thread group, or tasks in different thread groups. (In the last case, Linux
// refers to the task as being ptrace-reparented due to an implementation
// detail; we avoid this terminology to avoid confusion.)
//
// A thread group is *empty* if all non-leader tasks in the thread group are
// dead, and the leader is either a zombie or dead. The exit of a thread group
// leader is never waitable - by either the parent or tracer - until the thread
// group is empty.
//
// There are a few ways for an exit notification to be resolved:
//
// - The exit notification may be acknowledged by a call to Task.Wait with
// WaitOptions.ConsumeEvent set (e.g. due to a wait4() syscall).
//
// - If the notified party is the parent, and the parent thread group is not
// also the tracer thread group, and the notification signal is SIGCHLD, the
// parent may explicitly ignore the notification (see quote in exitNotify).
// Note that it's possible for the notified party to ignore the signal in other
// cases, but the notification is only resolved under the above conditions.
// (Actually, there is one exception; see the last paragraph of the "leader,
// has tracer, tracer thread group is parent thread group" case below.)
//
// - If the notified party is the parent, and the parent does not exist, the
// notification is resolved as if ignored. (This is only possible in the
// sentry. In Linux, the only task / thread group without a parent is global
// init, and killing global init causes a kernel panic.)
//
// - If the notified party is a tracer, the tracer may detach the traced task.
// (Zombie tasks cannot be ptrace-attached, so the reverse is not possible.)
//
// In addition, if the notified party is the parent, the parent may exit and
// cause the notifying task to be reparented to another thread group. This does
// not resolve the notification; instead, the notification must be resent to
// the new parent.
//
// The series of notifications generated for a given task's exit depend on
// whether it is a thread group leader; whether the task is ptraced; and, if
// so, whether the tracer thread group is the same as the parent thread group.
//
// - Non-leader, no tracer: No notification is generated; the task is reaped
// immediately.
//
// - Non-leader, has tracer: SIGCHLD is sent to the tracer. When the tracer
// notification is resolved (by waiting or detaching), the task is reaped. (For
// non-leaders, whether the tracer and parent thread groups are the same is
// irrelevant.)
//
// - Leader, no tracer: The task remains a zombie, with no notification sent,
// until all other tasks in the thread group are dead. (In Linux terms, this
// condition is indicated by include/linux/sched.h:thread_group_empty(); tasks
// are removed from their thread_group list in kernel/exit.c:release_task() =>
// __exit_signal() => __unhash_process().) Then the thread group's termination
// signal is sent to the parent. When the parent notification is resolved (by
// waiting or ignoring), the task is reaped.
//
// - Leader, has tracer, tracer thread group is not parent thread group:
// SIGCHLD is sent to the tracer. When the tracer notification is resolved (by
// waiting or detaching), and all other tasks in the thread group are dead, the
// thread group's termination signal is sent to the parent. (Note that the
// tracer cannot resolve the exit notification by waiting until the thread
// group is empty.) When the parent notification is resolved, the task is
// reaped.
//
// - Leader, has tracer, tracer thread group is parent thread group:
//
// If all other tasks in the thread group are dead, the thread group's
// termination signal is sent to the parent. At this point, the notification
// can only be resolved by waiting. If the parent detaches from the task as a
// tracer, the notification is not resolved, but the notification can now be
// resolved by waiting or ignoring. When the parent notification is resolved,
// the task is reaped.
//
// If at least one task in the thread group is not dead, SIGCHLD is sent to the
// parent. At this point, the notification cannot be resolved at all; once the
// thread group becomes empty, it can be resolved only by waiting. If the
// parent detaches from the task as a tracer before all remaining tasks die,
// then exit notification proceeds as in the case where the leader never had a
// tracer. If the parent detaches from the task as a tracer after all remaining
// tasks die, the notification is not resolved, but the notification can now be
// resolved by waiting or ignoring. When the parent notification is resolved,
// the task is reaped.
//
// In both of the above cases, when the parent detaches from the task as a
// tracer while the thread group is empty, whether or not the parent resolves
// the notification by ignoring it is based on the parent's SIGCHLD signal
// action, whether or not the thread group's termination signal is SIGCHLD
// (Linux: kernel/ptrace.c:__ptrace_detach() => ignoring_children()).
//
// There is one final wrinkle: A leader can become a non-leader due to a
// sibling execve. In this case, the execing thread detaches the leader's
// tracer (if one exists) and reaps the leader immediately. In Linux, this is
// in fs/exec.c:de_thread(); in the sentry, this is in Task.promoteLocked().
// +stateify savable
type runExitNotify struct{}
func (*runExitNotify) execute(t *Task) taskRunState {
t.tg.pidns.owner.mu.Lock()
defer t.tg.pidns.owner.mu.Unlock()
t.advanceExitStateLocked(TaskExitInitiated, TaskExitZombie)
t.tg.liveTasks--
// Check if this completes a sibling's execve.
if t.tg.execing != nil && t.tg.liveTasks == 1 {
// execing blocks the addition of new tasks to the thread group, so
// the sole living task must be the execing one.
e := t.tg.execing
e.tg.signalHandlers.mu.Lock()
if _, ok := e.stop.(*execStop); ok {
e.endInternalStopLocked()
}
e.tg.signalHandlers.mu.Unlock()
}
t.exitNotifyLocked(false)
// The task goroutine will now exit.
return nil
}
// exitNotifyLocked is called after changes to t's state that affect exit
// notification.
//
// If fromPtraceDetach is true, the caller is ptraceDetach or exitPtrace;
// thanks to Linux's haphazard implementation of this functionality, such cases
// determine whether parent notifications are ignored based on the parent's
// handling of SIGCHLD, regardless of what the exited task's thread group's
// termination signal is.
//
// Preconditions: The TaskSet mutex must be locked for writing.
func (t *Task) exitNotifyLocked(fromPtraceDetach bool) {
if t.exitState != TaskExitZombie {
return
}
if !t.exitTracerNotified {
t.exitTracerNotified = true
tracer := t.Tracer()
if tracer == nil {
t.exitTracerAcked = true
} else if t != t.tg.leader || t.parent == nil || tracer.tg != t.parent.tg {
// Don't set exitParentNotified if t is non-leader, even if the
// tracer is in the parent thread group, so that if the parent
// detaches the following call to exitNotifyLocked passes through
// the !exitParentNotified case below and causes t to be reaped
// immediately.
//
// Tracer notification doesn't care about about
// SIG_IGN/SA_NOCLDWAIT.
tracer.tg.signalHandlers.mu.Lock()
tracer.sendSignalLocked(t.exitNotificationSignal(linux.SIGCHLD, tracer), true /* group */)
tracer.tg.signalHandlers.mu.Unlock()
// Wake EventTraceeStop waiters as well since this task will never
// ptrace-stop again.
tracer.tg.eventQueue.Notify(EventExit | EventTraceeStop)
} else {
// t is a leader and the tracer is in the parent thread group.
t.exitParentNotified = true
sig := linux.SIGCHLD
if t.tg.tasksCount == 1 {
sig = t.tg.terminationSignal
}
// This notification doesn't care about SIG_IGN/SA_NOCLDWAIT either
// (in Linux, the check in do_notify_parent() is gated by
// !tsk->ptrace.)
t.parent.tg.signalHandlers.mu.Lock()
t.parent.sendSignalLocked(t.exitNotificationSignal(sig, t.parent), true /* group */)
t.parent.tg.signalHandlers.mu.Unlock()
// See below for rationale for this event mask.
t.parent.tg.eventQueue.Notify(EventExit | EventChildGroupStop | EventGroupContinue)
}
}
if t.exitTracerAcked && !t.exitParentNotified {
if t != t.tg.leader {
t.exitParentNotified = true
t.exitParentAcked = true
} else if t.tg.tasksCount == 1 {
t.exitParentNotified = true
if t.parent == nil {
t.exitParentAcked = true
} else {
// "POSIX.1-2001 specifies that if the disposition of SIGCHLD is
// set to SIG_IGN or the SA_NOCLDWAIT flag is set for SIGCHLD (see
// sigaction(2)), then children that terminate do not become
// zombies and a call to wait() or waitpid() will block until all
// children have terminated, and then fail with errno set to
// ECHILD. (The original POSIX standard left the behavior of
// setting SIGCHLD to SIG_IGN unspecified. Note that even though
// the default disposition of SIGCHLD is "ignore", explicitly
// setting the disposition to SIG_IGN results in different
// treatment of zombie process children.) Linux 2.6 conforms to
// this specification." - wait(2)
//
// Some undocumented Linux-specific details:
//
// - All of the above is ignored if the termination signal isn't
// SIGCHLD.
//
// - SA_NOCLDWAIT causes the leader to be immediately reaped, but
// does not suppress the SIGCHLD.
signalParent := t.tg.terminationSignal.IsValid()
t.parent.tg.signalHandlers.mu.Lock()
if t.tg.terminationSignal == linux.SIGCHLD || fromPtraceDetach {
if act, ok := t.parent.tg.signalHandlers.actions[linux.SIGCHLD]; ok {
if act.Handler == arch.SignalActIgnore {
t.exitParentAcked = true
signalParent = false
} else if act.Flags&arch.SignalFlagNoCldWait != 0 {
t.exitParentAcked = true
}
}
}
if signalParent {
t.parent.tg.leader.sendSignalLocked(t.exitNotificationSignal(t.tg.terminationSignal, t.parent), true /* group */)
}
t.parent.tg.signalHandlers.mu.Unlock()
// If a task in the parent was waiting for a child group stop
// or continue, it needs to be notified of the exit, because
// there may be no remaining eligible tasks (so that wait
// should return ECHILD).
t.parent.tg.eventQueue.Notify(EventExit | EventChildGroupStop | EventGroupContinue)
}
}
}
if t.exitTracerAcked && t.exitParentAcked {
t.advanceExitStateLocked(TaskExitZombie, TaskExitDead)
for ns := t.tg.pidns; ns != nil; ns = ns.parent {
tid := ns.tids[t]
delete(ns.tasks, tid)
delete(ns.tids, t)
}
t.tg.exitedCPUStats.Accumulate(t.CPUStats())
t.tg.ioUsage.Accumulate(t.ioUsage)
t.tg.signalHandlers.mu.Lock()
t.tg.tasks.Remove(t)
if t.tg.lastTimerSignalTask == t {
t.tg.lastTimerSignalTask = nil
}
t.tg.tasksCount--
tc := t.tg.tasksCount
t.tg.signalHandlers.mu.Unlock()
if tc == 1 && t != t.tg.leader {
// Our fromPtraceDetach doesn't matter here (in Linux terms, this
// is via a call to release_task()).
t.tg.leader.exitNotifyLocked(false)
} else if tc == 0 {
t.tg.processGroup.decRefWithParent(t.tg.parentPG())
}
if t.parent != nil {
delete(t.parent.children, t)
t.parent = nil
}
}
}
// Preconditions: The TaskSet mutex must be locked.
func (t *Task) exitNotificationSignal(sig linux.Signal, receiver *Task) *arch.SignalInfo {
info := &arch.SignalInfo{
Signo: int32(sig),
}
info.SetPid(int32(receiver.tg.pidns.tids[t]))
info.SetUid(int32(t.Credentials().RealKUID.In(receiver.UserNamespace()).OrOverflow()))
if t.exitStatus.Signaled() {
info.Code = arch.CLD_KILLED
info.SetStatus(int32(t.exitStatus.Signo))
} else {
info.Code = arch.CLD_EXITED
info.SetStatus(int32(t.exitStatus.Code))
}
// TODO: Set utime, stime.
return info
}
// ExitStatus returns t's exit status, which is only guaranteed to be
// meaningful if t.ExitState() != TaskExitNone.
func (t *Task) ExitStatus() ExitStatus {
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
return t.exitStatus
}
// ExitStatus returns the exit status that would be returned by a consuming
// wait*() on tg.
func (tg *ThreadGroup) ExitStatus() ExitStatus {
tg.pidns.owner.mu.RLock()
defer tg.pidns.owner.mu.RUnlock()
tg.signalHandlers.mu.Lock()
defer tg.signalHandlers.mu.Unlock()
if tg.exiting {
return tg.exitStatus
}
return tg.leader.exitStatus
}
// TerminationSignal returns the thread group's termination signal.
func (tg *ThreadGroup) TerminationSignal() linux.Signal {
tg.pidns.owner.mu.RLock()
defer tg.pidns.owner.mu.RUnlock()
return tg.terminationSignal
}
// Task events that can be waited for.
const (
// EventExit represents an exit notification generated for a child thread
// group leader or a tracee under the conditions specified in the comment
// above runExitNotify.
EventExit waiter.EventMask = 1 << iota
// EventChildGroupStop occurs when a child thread group completes a group
// stop (i.e. all tasks in the child thread group have entered a stopped
// state as a result of a group stop).
EventChildGroupStop
// EventTraceeStop occurs when a task that is ptraced by a task in the
// notified thread group enters a ptrace stop (see ptrace(2)).
EventTraceeStop
// EventGroupContinue occurs when a child thread group, or a thread group
// whose leader is ptraced by a task in the notified thread group, that had
// initiated or completed a group stop leaves the group stop, due to the
// child thread group or any task in the child thread group being sent
// SIGCONT.
EventGroupContinue
)
// WaitOptions controls the behavior of Task.Wait.
type WaitOptions struct {
// If SpecificTID is non-zero, only events from the task with thread ID
// SpecificTID are eligible to be waited for. SpecificTID is resolved in
// the PID namespace of the waiter (the method receiver of Task.Wait). If
// no such task exists, or that task would not otherwise be eligible to be
// waited for by the waiting task, then there are no waitable tasks and
// Wait will return ECHILD.
SpecificTID ThreadID
// If SpecificPGID is non-zero, only events from ThreadGroups with a
// matching ProcessGroupID are eligible to be waited for. (Same
// constraints as SpecificTID apply.)
SpecificPGID ProcessGroupID
// Terminology note: Per waitpid(2), "a clone child is one which delivers
// no signal, or a signal other than SIGCHLD to its parent upon
// termination." In Linux, termination signal is technically a per-task
// property rather than a per-thread-group property. However, clone()
// forces no termination signal for tasks created with CLONE_THREAD, and
// execve() resets the termination signal to SIGCHLD, so all
// non-group-leader threads have no termination signal and are therefore
// "clone tasks".
// If NonCloneTasks is true, events from non-clone tasks are eligible to be
// waited for.
NonCloneTasks bool
// If CloneTasks is true, events from clone tasks are eligible to be waited
// for.
CloneTasks bool
// Events is a bitwise combination of the events defined above that specify
// what events are of interest to the call to Wait.
Events waiter.EventMask
// If ConsumeEvent is true, the Wait should consume the event such that it
// cannot be returned by a future Wait. Note that if a task exit is
// consumed in this way, in most cases the task will be reaped.
ConsumeEvent bool
// If BlockInterruptErr is not nil, Wait will block until either an event
// is available or there are no tasks that could produce a waitable event;
// if that blocking is interrupted, Wait returns BlockInterruptErr. If
// BlockInterruptErr is nil, Wait will not block.
BlockInterruptErr error
}
// Preconditions: The TaskSet mutex must be locked (for reading or writing).
func (o *WaitOptions) matchesTask(t *Task, pidns *PIDNamespace) bool {
if o.SpecificTID != 0 && o.SpecificTID != pidns.tids[t] {
return false
}
if o.SpecificPGID != 0 && o.SpecificPGID != pidns.pgids[t.tg.processGroup] {
return false
}
if t == t.tg.leader && t.tg.terminationSignal == linux.SIGCHLD {
return o.NonCloneTasks
}
return o.CloneTasks
}
// ErrNoWaitableEvent is returned by non-blocking Task.Waits (e.g.
// waitpid(WNOHANG)) that find no waitable events, but determine that waitable
// events may exist in the future. (In contrast, if a non-blocking or blocking
// Wait determines that there are no tasks that can produce a waitable event,
// Task.Wait returns ECHILD.)
var ErrNoWaitableEvent = errors.New("non-blocking Wait found eligible threads but no waitable events")
// WaitResult contains information about a waited-for event.
type WaitResult struct {
// Task is the task that reported the event.
Task *Task
// TID is the thread ID of Task in the PID namespace of the task that
// called Wait (that is, the method receiver of the call to Task.Wait). TID
// is provided because consuming exit waits cause the thread ID to be
// deallocated.
TID ThreadID
// UID is the real UID of Task in the user namespace of the task that
// called Wait.
UID auth.UID
// Event is exactly one of the events defined above.
Event waiter.EventMask
// Status is the numeric status associated with the event.
Status uint32
}
// Wait waits for an event from a thread group that is a child of t's thread
// group, or a task in such a thread group, or a task that is ptraced by t,
// subject to the options specified in opts.
func (t *Task) Wait(opts *WaitOptions) (*WaitResult, error) {
if opts.BlockInterruptErr == nil {
return t.waitOnce(opts)
}
w, ch := waiter.NewChannelEntry(nil)
t.tg.eventQueue.EventRegister(&w, opts.Events)
defer t.tg.eventQueue.EventUnregister(&w)
for {
wr, err := t.waitOnce(opts)
if err != ErrNoWaitableEvent {
// This includes err == nil.
return wr, err
}
if err := t.Block(ch); err != nil {
return wr, syserror.ConvertIntr(err, opts.BlockInterruptErr)
}
}
}
func (t *Task) waitOnce(opts *WaitOptions) (*WaitResult, error) {
anyWaitableTasks := false
t.tg.pidns.owner.mu.Lock()
defer t.tg.pidns.owner.mu.Unlock()
// Without the (unimplemented) __WNOTHREAD flag, a task can wait on the
// children and tracees of any task in the same thread group.
for parent := t.tg.tasks.Front(); parent != nil; parent = parent.Next() {
for child := range parent.children {
if !opts.matchesTask(child, parent.tg.pidns) {
continue
}
// Non-leaders don't notify parents on exit and aren't eligible to
// be waited on.
if opts.Events&EventExit != 0 && child == child.tg.leader && !child.exitParentAcked {
anyWaitableTasks = true
if wr := t.waitCollectZombieLocked(child, opts, false); wr != nil {
return wr, nil
}
}
// Check for group stops and continues. Tasks that have passed
// TaskExitInitiated can no longer participate in group stops.
if opts.Events&(EventChildGroupStop|EventGroupContinue) == 0 {
continue
}
if child.exitState >= TaskExitInitiated {
continue
}
// If the waiter is in the same thread group as the task's
// tracer, do not report its group stops; they will be reported
// as ptrace stops instead. This also skips checking for group
// continues, but they'll be checked for when scanning tracees
// below. (Per kernel/exit.c:wait_consider_task(): "If a
// ptracer wants to distinguish the two events for its own
// children, it should create a separate process which takes
// the role of real parent.")
if tracer := child.Tracer(); tracer != nil && tracer.tg == parent.tg {
continue
}
anyWaitableTasks = true
if opts.Events&EventChildGroupStop != 0 {
if wr := t.waitCollectChildGroupStopLocked(child, opts); wr != nil {
return wr, nil
}
}
if opts.Events&EventGroupContinue != 0 {
if wr := t.waitCollectGroupContinueLocked(child, opts); wr != nil {
return wr, nil
}
}
}
for tracee := range parent.ptraceTracees {
if !opts.matchesTask(tracee, parent.tg.pidns) {
continue
}
// Non-leaders do notify tracers on exit.
if opts.Events&EventExit != 0 && !tracee.exitTracerAcked {
anyWaitableTasks = true
if wr := t.waitCollectZombieLocked(tracee, opts, true); wr != nil {
return wr, nil
}
}
if opts.Events&(EventTraceeStop|EventGroupContinue) == 0 {
continue
}
if tracee.exitState >= TaskExitInitiated {
continue
}
anyWaitableTasks = true
if opts.Events&EventTraceeStop != 0 {
if wr := t.waitCollectTraceeStopLocked(tracee, opts); wr != nil {
return wr, nil
}
}
if opts.Events&EventGroupContinue != 0 {
if wr := t.waitCollectGroupContinueLocked(tracee, opts); wr != nil {
return wr, nil
}
}
}
}
if anyWaitableTasks {
return nil, ErrNoWaitableEvent
}
return nil, syserror.ECHILD
}
// Preconditions: The TaskSet mutex must be locked for writing.
func (t *Task) waitCollectZombieLocked(target *Task, opts *WaitOptions, asPtracer bool) *WaitResult {
if asPtracer && !target.exitTracerNotified {
return nil
}
if !asPtracer && !target.exitParentNotified {
return nil
}
// Zombied thread group leaders are never waitable until their thread group
// is otherwise empty. Usually this is caught by the
// target.exitParentNotified check above, but if t is both (in the thread
// group of) target's tracer and parent, asPtracer may be true.
if target == target.tg.leader && target.tg.tasksCount != 1 {
return nil
}
pid := t.tg.pidns.tids[target]
uid := target.Credentials().RealKUID.In(t.UserNamespace()).OrOverflow()
status := target.exitStatus.Status()
if !opts.ConsumeEvent {
return &WaitResult{
Task: target,
TID: pid,
UID: uid,
Event: EventExit,
Status: status,
}
}
// Surprisingly, the exit status reported by a non-consuming wait can
// differ from that reported by a consuming wait; the latter will return
// the group exit code if one is available.
if target.tg.exiting {
status = target.tg.exitStatus.Status()
}
// t may be (in the thread group of) target's parent, tracer, or both. We
// don't need to check for !exitTracerAcked because tracees are detached
// here, and we don't need to check for !exitParentAcked because zombies
// will be reaped here.
if tracer := target.Tracer(); tracer != nil && tracer.tg == t.tg && target.exitTracerNotified {
target.exitTracerAcked = true
target.ptraceTracer.Store((*Task)(nil))
delete(t.ptraceTracees, target)
}
if target.parent != nil && target.parent.tg == t.tg && target.exitParentNotified {
target.exitParentAcked = true
if target == target.tg.leader {
// target.tg.exitedCPUStats doesn't include target.CPUStats() yet,
// and won't until after target.exitNotifyLocked() (maybe). Include
// target.CPUStats() explicitly. This is consistent with Linux,
// which accounts an exited task's cputime to its thread group in
// kernel/exit.c:release_task() => __exit_signal(), and uses
// thread_group_cputime_adjusted() in wait_task_zombie().
t.tg.childCPUStats.Accumulate(target.CPUStats())
t.tg.childCPUStats.Accumulate(target.tg.exitedCPUStats)
t.tg.childCPUStats.Accumulate(target.tg.childCPUStats)
// Update t's child max resident set size. The size will be the maximum
// of this thread's size and all its childrens' sizes.
if t.tg.childMaxRSS < target.tg.maxRSS {
t.tg.childMaxRSS = target.tg.maxRSS
}
if t.tg.childMaxRSS < target.tg.childMaxRSS {
t.tg.childMaxRSS = target.tg.childMaxRSS
}
}
}
target.exitNotifyLocked(false)
return &WaitResult{
Task: target,
TID: pid,
UID: uid,
Event: EventExit,
Status: status,
}
}
// updateRSSLocked updates t.tg.maxRSS.
//
// Preconditions: The TaskSet mutex must be locked for writing.
func (t *Task) updateRSSLocked() {
if mmMaxRSS := t.MemoryManager().MaxResidentSetSize(); t.tg.maxRSS < mmMaxRSS {
t.tg.maxRSS = mmMaxRSS
}
}
// Preconditions: The TaskSet mutex must be locked for writing.
func (t *Task) waitCollectChildGroupStopLocked(target *Task, opts *WaitOptions) *WaitResult {
target.tg.signalHandlers.mu.Lock()
defer target.tg.signalHandlers.mu.Unlock()
if !target.tg.groupStopWaitable {
return nil
}
pid := t.tg.pidns.tids[target]
uid := target.Credentials().RealKUID.In(t.UserNamespace()).OrOverflow()
sig := target.tg.groupStopSignal
if opts.ConsumeEvent {
target.tg.groupStopWaitable = false
}
return &WaitResult{
Task: target,
TID: pid,
UID: uid,
Event: EventChildGroupStop,
// There is no name for these status constants.
Status: (uint32(sig)&0xff)<<8 | 0x7f,
}
}
// Preconditions: The TaskSet mutex must be locked for writing.
func (t *Task) waitCollectGroupContinueLocked(target *Task, opts *WaitOptions) *WaitResult {
target.tg.signalHandlers.mu.Lock()
defer target.tg.signalHandlers.mu.Unlock()
if !target.tg.groupContWaitable {
return nil
}
pid := t.tg.pidns.tids[target]
uid := target.Credentials().RealKUID.In(t.UserNamespace()).OrOverflow()
if opts.ConsumeEvent {
target.tg.groupContWaitable = false
}
return &WaitResult{
Task: target,
TID: pid,
UID: uid,
Event: EventGroupContinue,
Status: 0xffff,
}
}
// Preconditions: The TaskSet mutex must be locked for writing.
func (t *Task) waitCollectTraceeStopLocked(target *Task, opts *WaitOptions) *WaitResult {
target.tg.signalHandlers.mu.Lock()
defer target.tg.signalHandlers.mu.Unlock()
if target.stop == nil {
return nil
}
if _, ok := target.stop.(*ptraceStop); !ok {
return nil
}
if target.ptraceCode == 0 {
return nil
}
pid := t.tg.pidns.tids[target]
uid := target.Credentials().RealKUID.In(t.UserNamespace()).OrOverflow()
code := target.ptraceCode
if opts.ConsumeEvent {
target.ptraceCode = 0
}
return &WaitResult{
Task: target,
TID: pid,
UID: uid,
Event: EventTraceeStop,
Status: uint32(code)<<8 | 0x7f,
}
}
// ExitState returns t's current progress through the exit path.
func (t *Task) ExitState() TaskExitState {
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
return t.exitState
}
// ParentDeathSignal returns t's parent death signal.
func (t *Task) ParentDeathSignal() linux.Signal {
t.mu.Lock()
defer t.mu.Unlock()
return t.parentDeathSignal
}
// SetParentDeathSignal sets t's parent death signal.
func (t *Task) SetParentDeathSignal(sig linux.Signal) {
t.mu.Lock()
defer t.mu.Unlock()
t.parentDeathSignal = sig
}
|