summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/kernel/task_clone.go
blob: 38f7826e20a7dca4646a4e5c210a1d556bb8bd86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
// Copyright 2018 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package kernel

import (
	"gvisor.googlesource.com/gvisor/pkg/abi/linux"
	"gvisor.googlesource.com/gvisor/pkg/bpf"
	"gvisor.googlesource.com/gvisor/pkg/sentry/kernel/auth"
	"gvisor.googlesource.com/gvisor/pkg/sentry/usermem"
	"gvisor.googlesource.com/gvisor/pkg/syserror"
)

// SharingOptions controls what resources are shared by a new task created by
// Task.Clone, or an existing task affected by Task.Unshare.
type SharingOptions struct {
	// If NewAddressSpace is true, the task should have an independent virtual
	// address space.
	NewAddressSpace bool

	// If NewSignalHandlers is true, the task should use an independent set of
	// signal handlers.
	NewSignalHandlers bool

	// If NewThreadGroup is true, the task should be the leader of its own
	// thread group. TerminationSignal is the signal that the thread group
	// will send to its parent when it exits. If NewThreadGroup is false,
	// TerminationSignal is ignored.
	NewThreadGroup    bool
	TerminationSignal linux.Signal

	// If NewPIDNamespace is true:
	//
	// - In the context of Task.Clone, the new task should be the init task
	// (TID 1) in a new PID namespace.
	//
	// - In the context of Task.Unshare, the task should create a new PID
	// namespace, and all subsequent clones of the task should be members of
	// the new PID namespace.
	NewPIDNamespace bool

	// If NewUserNamespace is true, the task should have an independent user
	// namespace.
	NewUserNamespace bool

	// If NewNetworkNamespace is true, the task should have an independent
	// network namespace. (Note that network namespaces are not really
	// implemented; see comment on Task.netns for details.)
	NewNetworkNamespace bool

	// If NewFiles is true, the task should use an independent file descriptor
	// table.
	NewFiles bool

	// If NewFSContext is true, the task should have an independent FSContext.
	NewFSContext bool

	// If NewUTSNamespace is true, the task should have an independent UTS
	// namespace.
	NewUTSNamespace bool

	// If NewIPCNamespace is true, the task should have an independent IPC
	// namespace.
	NewIPCNamespace bool
}

// CloneOptions controls the behavior of Task.Clone.
type CloneOptions struct {
	// SharingOptions defines the set of resources that the new task will share
	// with its parent.
	SharingOptions

	// Stack is the initial stack pointer of the new task. If Stack is 0, the
	// new task will start with the same stack pointer as its parent.
	Stack usermem.Addr

	// If SetTLS is true, set the new task's TLS (thread-local storage)
	// descriptor to TLS. If SetTLS is false, TLS is ignored.
	SetTLS bool
	TLS    usermem.Addr

	// If ChildClearTID is true, when the child exits, 0 is written to the
	// address ChildTID in the child's memory, and if the write is successful a
	// futex wake on the same address is performed.
	//
	// If ChildSetTID is true, the child's thread ID (in the child's PID
	// namespace) is written to address ChildTID in the child's memory. (As in
	// Linux, failed writes are silently ignored.)
	ChildClearTID bool
	ChildSetTID   bool
	ChildTID      usermem.Addr

	// If ParentSetTID is true, the child's thread ID (in the parent's PID
	// namespace) is written to address ParentTID in the parent's memory. (As
	// in Linux, failed writes are silently ignored.)
	//
	// Older versions of the clone(2) man page state that CLONE_PARENT_SETTID
	// causes the child's thread ID to be written to ptid in both the parent
	// and child's memory, but this is a documentation error fixed by
	// 87ab04792ced ("clone.2: Fix description of CLONE_PARENT_SETTID").
	ParentSetTID bool
	ParentTID    usermem.Addr

	// If Vfork is true, place the parent in vforkStop until the cloned task
	// releases its TaskContext.
	Vfork bool

	// If Untraced is true, do not report PTRACE_EVENT_CLONE/FORK/VFORK for
	// this clone(), and do not ptrace-attach the caller's tracer to the new
	// task. (PTRACE_EVENT_VFORK_DONE will still be reported if appropriate).
	Untraced bool

	// If InheritTracer is true, ptrace-attach the caller's tracer to the new
	// task, even if no PTRACE_EVENT_CLONE/FORK/VFORK event would be reported
	// for it. If both Untraced and InheritTracer are true, no event will be
	// reported, but tracer inheritance will still occur.
	InheritTracer bool
}

// Clone implements the clone(2) syscall and returns the thread ID of the new
// task in t's PID namespace. Clone may return both a non-zero thread ID and a
// non-nil error.
//
// Preconditions: The caller must be running Task.doSyscallInvoke on the task
// goroutine.
func (t *Task) Clone(opts *CloneOptions) (ThreadID, *SyscallControl, error) {
	// Since signal actions may refer to application signal handlers by virtual
	// address, any set of signal handlers must refer to the same address
	// space.
	if !opts.NewSignalHandlers && opts.NewAddressSpace {
		return 0, nil, syserror.EINVAL
	}
	// In order for the behavior of thread-group-directed signals to be sane,
	// all tasks in a thread group must share signal handlers.
	if !opts.NewThreadGroup && opts.NewSignalHandlers {
		return 0, nil, syserror.EINVAL
	}
	// All tasks in a thread group must be in the same PID namespace.
	if !opts.NewThreadGroup && (opts.NewPIDNamespace || t.childPIDNamespace != nil) {
		return 0, nil, syserror.EINVAL
	}
	// The two different ways of specifying a new PID namespace are
	// incompatible.
	if opts.NewPIDNamespace && t.childPIDNamespace != nil {
		return 0, nil, syserror.EINVAL
	}
	// Thread groups and FS contexts cannot span user namespaces.
	if opts.NewUserNamespace && (!opts.NewThreadGroup || !opts.NewFSContext) {
		return 0, nil, syserror.EINVAL
	}

	// "If CLONE_NEWUSER is specified along with other CLONE_NEW* flags in a
	// single clone(2) or unshare(2) call, the user namespace is guaranteed to
	// be created first, giving the child (clone(2)) or caller (unshare(2))
	// privileges over the remaining namespaces created by the call." -
	// user_namespaces(7)
	creds := t.Credentials()
	var userns *auth.UserNamespace
	if opts.NewUserNamespace {
		var err error
		// "EPERM (since Linux 3.9): CLONE_NEWUSER was specified in flags and
		// the caller is in a chroot environment (i.e., the caller's root
		// directory does not match the root directory of the mount namespace
		// in which it resides)." - clone(2). Neither chroot(2) nor
		// user_namespaces(7) document this.
		if t.IsChrooted() {
			return 0, nil, syserror.EPERM
		}
		userns, err = creds.NewChildUserNamespace()
		if err != nil {
			return 0, nil, err
		}
	}
	if (opts.NewPIDNamespace || opts.NewNetworkNamespace || opts.NewUTSNamespace) && !creds.HasCapability(linux.CAP_SYS_ADMIN) {
		return 0, nil, syserror.EPERM
	}

	utsns := t.UTSNamespace()
	if opts.NewUTSNamespace {
		// Note that this must happen after NewUserNamespace so we get
		// the new userns if there is one.
		utsns = t.UTSNamespace().Clone(userns)
	}

	ipcns := t.IPCNamespace()
	if opts.NewIPCNamespace {
		// Note that "If CLONE_NEWIPC is set, then create the process in a new IPC
		// namespace"
		ipcns = NewIPCNamespace(userns)
	}

	tc, err := t.tc.Fork(t, !opts.NewAddressSpace)
	if err != nil {
		return 0, nil, err
	}
	// clone() returns 0 in the child.
	tc.Arch.SetReturn(0)
	if opts.Stack != 0 {
		tc.Arch.SetStack(uintptr(opts.Stack))
	}
	if opts.SetTLS {
		tc.Arch.StateData().Regs.Fs_base = uint64(opts.TLS)
	}

	pidns := t.tg.pidns
	if t.childPIDNamespace != nil {
		pidns = t.childPIDNamespace
	} else if opts.NewPIDNamespace {
		pidns = pidns.NewChild(userns)
	}
	tg := t.tg
	if opts.NewThreadGroup {
		sh := t.tg.signalHandlers
		if opts.NewSignalHandlers {
			sh = sh.Fork()
		}
		tg = NewThreadGroup(pidns, sh, opts.TerminationSignal, tg.limits.GetCopy(), t.k.monotonicClock)
	}
	cfg := &TaskConfig{
		Kernel:            t.k,
		ThreadGroup:       tg,
		TaskContext:       tc,
		TaskResources:     t.tr.Fork(!opts.NewFiles, !opts.NewFSContext),
		Niceness:          t.Niceness(),
		Credentials:       creds.Fork(),
		NetworkNamespaced: t.netns,
		AllowedCPUMask:    t.CPUMask(),
		UTSNamespace:      utsns,
		IPCNamespace:      ipcns,
	}
	if opts.NewThreadGroup {
		cfg.Parent = t
	} else {
		cfg.InheritParent = t
	}
	if opts.NewNetworkNamespace {
		cfg.NetworkNamespaced = true
	}
	nt, err := t.tg.pidns.owner.NewTask(cfg)
	if err != nil {
		if opts.NewThreadGroup {
			tg.release()
		}
		return 0, nil, err
	}

	// "A child process created via fork(2) inherits a copy of its parent's
	// alternate signal stack settings" - sigaltstack(2).
	//
	// However kernel/fork.c:copy_process() adds a limitation to this:
	// "sigaltstack should be cleared when sharing the same VM".
	if opts.NewAddressSpace || opts.Vfork {
		nt.SetSignalStack(t.SignalStack())
	}

	if userns != nil {
		if err := nt.SetUserNamespace(userns); err != nil {
			// This shouldn't be possible: userns was created from nt.creds, so
			// nt should have CAP_SYS_ADMIN in userns.
			panic("Task.Clone: SetUserNamespace failed: " + err.Error())
		}
	}

	// This has to happen last, because e.g. ptraceClone may send a SIGSTOP to
	// nt that it must receive before its task goroutine starts running.
	tid := nt.k.tasks.Root.IDOfTask(nt)
	defer nt.Start(tid)

	// "If fork/clone and execve are allowed by @prog, any child processes will
	// be constrained to the same filters and system call ABI as the parent." -
	// Documentation/prctl/seccomp_filter.txt
	nt.syscallFilters = append([]bpf.Program(nil), t.syscallFilters...)
	if opts.Vfork {
		nt.vforkParent = t
	}

	if opts.ChildClearTID {
		nt.SetClearTID(opts.ChildTID)
	}
	if opts.ChildSetTID {
		// Can't use Task.CopyOut, which assumes AddressSpaceActive.
		usermem.CopyObjectOut(t, nt.MemoryManager(), opts.ChildTID, nt.ThreadID(), usermem.IOOpts{})
	}
	ntid := t.tg.pidns.IDOfTask(nt)
	if opts.ParentSetTID {
		t.CopyOut(opts.ParentTID, ntid)
	}

	kind := ptraceCloneKindClone
	if opts.Vfork {
		kind = ptraceCloneKindVfork
	} else if opts.TerminationSignal == linux.SIGCHLD {
		kind = ptraceCloneKindFork
	}
	if t.ptraceClone(kind, nt, opts) {
		if opts.Vfork {
			return ntid, &SyscallControl{next: &runSyscallAfterPtraceEventClone{vforkChild: nt, vforkChildTID: ntid}}, nil
		}
		return ntid, &SyscallControl{next: &runSyscallAfterPtraceEventClone{}}, nil
	}
	if opts.Vfork {
		t.maybeBeginVforkStop(nt)
		return ntid, &SyscallControl{next: &runSyscallAfterVforkStop{childTID: ntid}}, nil
	}
	return ntid, nil, nil
}

// maybeBeginVforkStop checks if a previously-started vfork child is still
// running and has not yet released its MM, such that its parent t should enter
// a vforkStop.
//
// Preconditions: The caller must be running on t's task goroutine.
func (t *Task) maybeBeginVforkStop(child *Task) {
	t.tg.pidns.owner.mu.RLock()
	defer t.tg.pidns.owner.mu.RUnlock()
	t.tg.signalHandlers.mu.Lock()
	defer t.tg.signalHandlers.mu.Unlock()
	if t.killedLocked() {
		child.vforkParent = nil
		return
	}
	if child.vforkParent == t {
		t.beginInternalStopLocked((*vforkStop)(nil))
	}
}

func (t *Task) unstopVforkParent() {
	t.tg.pidns.owner.mu.RLock()
	defer t.tg.pidns.owner.mu.RUnlock()
	if p := t.vforkParent; p != nil {
		p.tg.signalHandlers.mu.Lock()
		defer p.tg.signalHandlers.mu.Unlock()
		if _, ok := p.stop.(*vforkStop); ok {
			p.endInternalStopLocked()
		}
		// Parent no longer needs to be unstopped.
		t.vforkParent = nil
	}
}

// +stateify savable
type runSyscallAfterPtraceEventClone struct {
	vforkChild *Task

	// If vforkChild is not nil, vforkChildTID is its thread ID in the parent's
	// PID namespace. vforkChildTID must be stored since the child may exit and
	// release its TID before the PTRACE_EVENT stop ends.
	vforkChildTID ThreadID
}

func (r *runSyscallAfterPtraceEventClone) execute(t *Task) taskRunState {
	if r.vforkChild != nil {
		t.maybeBeginVforkStop(r.vforkChild)
		return &runSyscallAfterVforkStop{r.vforkChildTID}
	}
	return (*runSyscallExit)(nil)
}

// +stateify savable
type runSyscallAfterVforkStop struct {
	// childTID has the same meaning as
	// runSyscallAfterPtraceEventClone.vforkChildTID.
	childTID ThreadID
}

func (r *runSyscallAfterVforkStop) execute(t *Task) taskRunState {
	t.ptraceVforkDone(r.childTID)
	return (*runSyscallExit)(nil)
}

// Unshare changes the set of resources t shares with other tasks, as specified
// by opts.
//
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) Unshare(opts *SharingOptions) error {
	// In Linux unshare(2), NewThreadGroup implies NewSignalHandlers and
	// NewSignalHandlers implies NewAddressSpace. All three flags are no-ops if
	// t is the only task using its MM, which due to clone(2)'s rules imply
	// that it is also the only task using its signal handlers / in its thread
	// group, and cause EINVAL to be returned otherwise.
	//
	// Since we don't count the number of tasks using each address space or set
	// of signal handlers, we reject NewSignalHandlers and NewAddressSpace
	// altogether, and interpret NewThreadGroup as requiring that t be the only
	// member of its thread group. This seems to be logically coherent, in the
	// sense that clone(2) allows a task to share signal handlers and address
	// spaces with tasks in other thread groups.
	if opts.NewAddressSpace || opts.NewSignalHandlers {
		return syserror.EINVAL
	}
	if opts.NewThreadGroup {
		t.tg.signalHandlers.mu.Lock()
		if t.tg.tasksCount != 1 {
			t.tg.signalHandlers.mu.Unlock()
			return syserror.EINVAL
		}
		t.tg.signalHandlers.mu.Unlock()
		// This isn't racy because we're the only living task, and therefore
		// the only task capable of creating new ones, in our thread group.
	}
	if opts.NewUserNamespace {
		if t.IsChrooted() {
			return syserror.EPERM
		}
		// This temporary is needed because Go.
		creds := t.Credentials()
		newUserNS, err := creds.NewChildUserNamespace()
		if err != nil {
			return err
		}
		err = t.SetUserNamespace(newUserNS)
		if err != nil {
			return err
		}
	}
	haveCapSysAdmin := t.HasCapability(linux.CAP_SYS_ADMIN)
	if opts.NewPIDNamespace {
		if !haveCapSysAdmin {
			return syserror.EPERM
		}
		t.childPIDNamespace = t.tg.pidns.NewChild(t.UserNamespace())
	}
	t.mu.Lock()
	defer t.mu.Unlock()
	if opts.NewNetworkNamespace {
		if !haveCapSysAdmin {
			return syserror.EPERM
		}
		t.netns = true
	}
	if opts.NewUTSNamespace {
		if !haveCapSysAdmin {
			return syserror.EPERM
		}
		// Note that this must happen after NewUserNamespace, so the
		// new user namespace is used if there is one.
		t.utsns = t.utsns.Clone(t.creds.UserNamespace)
	}
	if opts.NewIPCNamespace {
		if !haveCapSysAdmin {
			return syserror.EPERM
		}
		// Note that "If CLONE_NEWIPC is set, then create the process in a new IPC
		// namespace"
		t.ipcns = NewIPCNamespace(t.creds.UserNamespace)
	}
	if opts.NewFiles {
		oldFDMap := t.tr.FDMap
		t.tr.FDMap = oldFDMap.Fork()
		oldFDMap.DecRef()
	}
	if opts.NewFSContext {
		oldFS := t.tr.FSContext
		t.tr.FSContext = oldFS.Fork()
		oldFS.DecRef()
	}
	return nil
}

// vforkStop is a TaskStop imposed on a task that creates a child with
// CLONE_VFORK or vfork(2), that ends when the child task ceases to use its
// current MM. (Normally, CLONE_VFORK is used in conjunction with CLONE_VM, so
// that the child and parent share mappings until the child execve()s into a
// new process image or exits.)
//
// +stateify savable
type vforkStop struct{}

// StopIgnoresKill implements TaskStop.Killable.
func (*vforkStop) Killable() bool { return true }