summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/kernel/shm/shm.go
blob: 7a6e9100469bfccdfc1344346594f200cc728a71 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Package shm implements sysv shared memory segments.
//
// Known missing features:
//
// - SHM_LOCK/SHM_UNLOCK are no-ops. The sentry currently doesn't implement
//   memory locking in general.
//
// - SHM_HUGETLB and related flags for shmget(2) are ignored. There's no easy
//   way to implement hugetlb support on a per-map basis, and it has no impact
//   on correctness.
//
// - SHM_NORESERVE for shmget(2) is ignored, the sentry doesn't implement swap
//   so it's meaningless to reserve space for swap.
//
// - No per-process segment size enforcement. This feature probably isn't used
//   much anyways, since Linux sets the per-process limits to the system-wide
//   limits by default.
//
// Lock ordering: mm.mappingMu -> shm registry lock -> shm lock
package shm

import (
	"fmt"

	"gvisor.dev/gvisor/pkg/abi/linux"
	"gvisor.dev/gvisor/pkg/context"
	"gvisor.dev/gvisor/pkg/errors/linuxerr"
	"gvisor.dev/gvisor/pkg/hostarch"
	"gvisor.dev/gvisor/pkg/log"
	"gvisor.dev/gvisor/pkg/sentry/fs"
	"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
	ktime "gvisor.dev/gvisor/pkg/sentry/kernel/time"
	"gvisor.dev/gvisor/pkg/sentry/memmap"
	"gvisor.dev/gvisor/pkg/sentry/pgalloc"
	"gvisor.dev/gvisor/pkg/sentry/usage"
	"gvisor.dev/gvisor/pkg/sync"
	"gvisor.dev/gvisor/pkg/syserror"
)

// Key represents a shm segment key. Analogous to a file name.
type Key int32

// ID represents the opaque handle for a shm segment. Analogous to an fd.
type ID int32

// Registry tracks all shared memory segments in an IPC namespace. The registry
// provides the mechanisms for creating and finding segments, and reporting
// global shm parameters.
//
// +stateify savable
type Registry struct {
	// userNS owns the IPC namespace this registry belong to. Immutable.
	userNS *auth.UserNamespace

	// mu protects all fields below.
	mu sync.Mutex `state:"nosave"`

	// shms maps segment ids to segments.
	//
	// shms holds all referenced segments, which are removed on the last
	// DecRef. Thus, it cannot itself hold a reference on the Shm.
	//
	// Since removal only occurs after the last (unlocked) DecRef, there
	// exists a short window during which a Shm still exists in Shm, but is
	// unreferenced. Users must use TryIncRef to determine if the Shm is
	// still valid.
	shms map[ID]*Shm

	// keysToShms maps segment keys to segments.
	//
	// Shms in keysToShms are guaranteed to be referenced, as they are
	// removed by disassociateKey before the last DecRef.
	keysToShms map[Key]*Shm

	// Sum of the sizes of all existing segments rounded up to page size, in
	// units of page size.
	totalPages uint64

	// ID assigned to the last created segment. Used to quickly find the next
	// unused ID.
	lastIDUsed ID
}

// NewRegistry creates a new shm registry.
func NewRegistry(userNS *auth.UserNamespace) *Registry {
	return &Registry{
		userNS:     userNS,
		shms:       make(map[ID]*Shm),
		keysToShms: make(map[Key]*Shm),
	}
}

// FindByID looks up a segment given an ID.
//
// FindByID returns a reference on Shm.
func (r *Registry) FindByID(id ID) *Shm {
	r.mu.Lock()
	defer r.mu.Unlock()
	s := r.shms[id]
	// Take a reference on s. If TryIncRef fails, s has reached the last
	// DecRef, but hasn't quite been removed from r.shms yet.
	if s != nil && s.TryIncRef() {
		return s
	}
	return nil
}

// dissociateKey removes the association between a segment and its key,
// preventing it from being discovered in the registry. This doesn't necessarily
// mean the segment is about to be destroyed. This is analogous to unlinking a
// file; the segment can still be used by a process already referencing it, but
// cannot be discovered by a new process.
func (r *Registry) dissociateKey(s *Shm) {
	r.mu.Lock()
	defer r.mu.Unlock()
	s.mu.Lock()
	defer s.mu.Unlock()
	if s.key != linux.IPC_PRIVATE {
		delete(r.keysToShms, s.key)
		s.key = linux.IPC_PRIVATE
	}
}

// FindOrCreate looks up or creates a segment in the registry. It's functionally
// analogous to open(2).
//
// FindOrCreate returns a reference on Shm.
func (r *Registry) FindOrCreate(ctx context.Context, pid int32, key Key, size uint64, mode linux.FileMode, private, create, exclusive bool) (*Shm, error) {
	if (create || private) && (size < linux.SHMMIN || size > linux.SHMMAX) {
		// "A new segment was to be created and size is less than SHMMIN or
		// greater than SHMMAX." - man shmget(2)
		//
		// Note that 'private' always implies the creation of a new segment
		// whether IPC_CREAT is specified or not.
		return nil, linuxerr.EINVAL
	}

	r.mu.Lock()
	defer r.mu.Unlock()

	if len(r.shms) >= linux.SHMMNI {
		// "All possible shared memory IDs have been taken (SHMMNI) ..."
		//   - man shmget(2)
		return nil, syserror.ENOSPC
	}

	if !private {
		// Look up an existing segment.
		if shm := r.keysToShms[key]; shm != nil {
			shm.mu.Lock()
			defer shm.mu.Unlock()

			// Check that caller can access the segment.
			if !shm.checkPermissions(ctx, fs.PermsFromMode(mode)) {
				// "The user does not have permission to access the shared
				// memory segment, and does not have the CAP_IPC_OWNER
				// capability in the user namespace that governs its IPC
				// namespace." - man shmget(2)
				return nil, syserror.EACCES
			}

			if size > shm.size {
				// "A segment for the given key exists, but size is greater than
				// the size of that segment." - man shmget(2)
				return nil, linuxerr.EINVAL
			}

			if create && exclusive {
				// "IPC_CREAT and IPC_EXCL were specified in shmflg, but a
				// shared memory segment already exists for key."
				//  - man shmget(2)
				return nil, syserror.EEXIST
			}

			shm.IncRef()
			return shm, nil
		}

		if !create {
			// "No segment exists for the given key, and IPC_CREAT was not
			// specified." - man shmget(2)
			return nil, syserror.ENOENT
		}
	}

	var sizeAligned uint64
	if val, ok := hostarch.Addr(size).RoundUp(); ok {
		sizeAligned = uint64(val)
	} else {
		return nil, linuxerr.EINVAL
	}

	if numPages := sizeAligned / hostarch.PageSize; r.totalPages+numPages > linux.SHMALL {
		// "... allocating a segment of the requested size would cause the
		// system to exceed the system-wide limit on shared memory (SHMALL)."
		//   - man shmget(2)
		return nil, syserror.ENOSPC
	}

	// Need to create a new segment.
	creator := fs.FileOwnerFromContext(ctx)
	perms := fs.FilePermsFromMode(mode)
	s, err := r.newShm(ctx, pid, key, creator, perms, size)
	if err != nil {
		return nil, err
	}
	// The initial reference is held by s itself. Take another to return to
	// the caller.
	s.IncRef()
	return s, nil
}

// newShm creates a new segment in the registry.
//
// Precondition: Caller must hold r.mu.
func (r *Registry) newShm(ctx context.Context, pid int32, key Key, creator fs.FileOwner, perms fs.FilePermissions, size uint64) (*Shm, error) {
	mfp := pgalloc.MemoryFileProviderFromContext(ctx)
	if mfp == nil {
		panic(fmt.Sprintf("context.Context %T lacks non-nil value for key %T", ctx, pgalloc.CtxMemoryFileProvider))
	}

	effectiveSize := uint64(hostarch.Addr(size).MustRoundUp())
	fr, err := mfp.MemoryFile().Allocate(effectiveSize, usage.Anonymous)
	if err != nil {
		return nil, err
	}

	shm := &Shm{
		mfp:           mfp,
		registry:      r,
		creator:       creator,
		size:          size,
		effectiveSize: effectiveSize,
		fr:            fr,
		key:           key,
		perms:         perms,
		owner:         creator,
		creatorPID:    pid,
		changeTime:    ktime.NowFromContext(ctx),
	}
	shm.InitRefs()

	// Find the next available ID.
	for id := r.lastIDUsed + 1; id != r.lastIDUsed; id++ {
		// Handle wrap around.
		if id < 0 {
			id = 0
			continue
		}
		if r.shms[id] == nil {
			r.lastIDUsed = id

			shm.ID = id
			r.shms[id] = shm
			r.keysToShms[key] = shm

			r.totalPages += effectiveSize / hostarch.PageSize

			return shm, nil
		}
	}

	log.Warningf("Shm ids exhuasted, they may be leaking")
	return nil, syserror.ENOSPC
}

// IPCInfo reports global parameters for sysv shared memory segments on this
// system. See shmctl(IPC_INFO).
func (r *Registry) IPCInfo() *linux.ShmParams {
	return &linux.ShmParams{
		ShmMax: linux.SHMMAX,
		ShmMin: linux.SHMMIN,
		ShmMni: linux.SHMMNI,
		ShmSeg: linux.SHMSEG,
		ShmAll: linux.SHMALL,
	}
}

// ShmInfo reports linux-specific global parameters for sysv shared memory
// segments on this system. See shmctl(SHM_INFO).
func (r *Registry) ShmInfo() *linux.ShmInfo {
	r.mu.Lock()
	defer r.mu.Unlock()

	return &linux.ShmInfo{
		UsedIDs: int32(r.lastIDUsed),
		ShmTot:  r.totalPages,
		ShmRss:  r.totalPages, // We could probably get a better estimate from memory accounting.
		ShmSwp:  0,            // No reclaim at the moment.
	}
}

// remove deletes a segment from this registry, deaccounting the memory used by
// the segment.
//
// Precondition: Must follow a call to r.dissociateKey(s).
func (r *Registry) remove(s *Shm) {
	r.mu.Lock()
	defer r.mu.Unlock()
	s.mu.Lock()
	defer s.mu.Unlock()

	if s.key != linux.IPC_PRIVATE {
		panic(fmt.Sprintf("Attempted to remove %s from the registry whose key is still associated", s.debugLocked()))
	}

	delete(r.shms, s.ID)
	r.totalPages -= s.effectiveSize / hostarch.PageSize
}

// Release drops the self-reference of each active shm segment in the registry.
// It is called when the kernel.IPCNamespace containing r is being destroyed.
func (r *Registry) Release(ctx context.Context) {
	// Because Shm.DecRef() may acquire the same locks, collect the segments to
	// release first. Note that this should not race with any updates to r, since
	// the IPC namespace containing it has no more references.
	toRelease := make([]*Shm, 0)
	r.mu.Lock()
	for _, s := range r.keysToShms {
		s.mu.Lock()
		if !s.pendingDestruction {
			toRelease = append(toRelease, s)
		}
		s.mu.Unlock()
	}
	r.mu.Unlock()

	for _, s := range toRelease {
		r.dissociateKey(s)
		s.DecRef(ctx)
	}
}

// Shm represents a single shared memory segment.
//
// Shm segments are backed directly by an allocation from platform memory.
// Segments are always mapped as a whole, greatly simplifying how mappings are
// tracked. However note that mremap and munmap calls may cause the vma for a
// segment to become fragmented; which requires special care when unmapping a
// segment. See mm/shm.go.
//
// Segments persist until they are explicitly marked for destruction via
// MarkDestroyed().
//
// Shm implements memmap.Mappable and memmap.MappingIdentity.
//
// +stateify savable
type Shm struct {
	// ShmRefs tracks the number of references to this segment.
	//
	// A segment holds a reference to itself until it is marked for
	// destruction.
	//
	// In addition to direct users, the MemoryManager will hold references
	// via MappingIdentity.
	ShmRefs

	mfp pgalloc.MemoryFileProvider

	// registry points to the shm registry containing this segment. Immutable.
	registry *Registry

	// ID is the kernel identifier for this segment. Immutable.
	ID ID

	// creator is the user that created the segment. Immutable.
	creator fs.FileOwner

	// size is the requested size of the segment at creation, in
	// bytes. Immutable.
	size uint64

	// effectiveSize of the segment, rounding up to the next page
	// boundary. Immutable.
	//
	// Invariant: effectiveSize must be a multiple of hostarch.PageSize.
	effectiveSize uint64

	// fr is the offset into mfp.MemoryFile() that backs this contents of this
	// segment. Immutable.
	fr memmap.FileRange

	// mu protects all fields below.
	mu sync.Mutex `state:"nosave"`

	// key is the public identifier for this segment.
	key Key

	// perms is the access permissions for the segment.
	perms fs.FilePermissions

	// owner of this segment.
	owner fs.FileOwner
	// attachTime is updated on every successful shmat.
	attachTime ktime.Time
	// detachTime is updated on every successful shmdt.
	detachTime ktime.Time
	// changeTime is updated on every successful changes to the segment via
	// shmctl(IPC_SET).
	changeTime ktime.Time

	// creatorPID is the PID of the process that created the segment.
	creatorPID int32
	// lastAttachDetachPID is the pid of the process that issued the last shmat
	// or shmdt syscall.
	lastAttachDetachPID int32

	// pendingDestruction indicates the segment was marked as destroyed through
	// shmctl(IPC_RMID). When marked as destroyed, the segment will not be found
	// in the registry and can no longer be attached. When the last user
	// detaches from the segment, it is destroyed.
	pendingDestruction bool
}

// Precondition: Caller must hold s.mu.
func (s *Shm) debugLocked() string {
	return fmt.Sprintf("Shm{id: %d, key: %d, size: %d bytes, refs: %d, destroyed: %v}",
		s.ID, s.key, s.size, s.ReadRefs(), s.pendingDestruction)
}

// MappedName implements memmap.MappingIdentity.MappedName.
func (s *Shm) MappedName(ctx context.Context) string {
	s.mu.Lock()
	defer s.mu.Unlock()
	return fmt.Sprintf("SYSV%08d", s.key)
}

// DeviceID implements memmap.MappingIdentity.DeviceID.
func (s *Shm) DeviceID() uint64 {
	return shmDevice.DeviceID()
}

// InodeID implements memmap.MappingIdentity.InodeID.
func (s *Shm) InodeID() uint64 {
	// "shmid gets reported as "inode#" in /proc/pid/maps. proc-ps tools use
	// this. Changing this will break them." -- Linux, ipc/shm.c:newseg()
	return uint64(s.ID)
}

// DecRef drops a reference on s.
//
// Precondition: Caller must not hold s.mu.
func (s *Shm) DecRef(ctx context.Context) {
	s.ShmRefs.DecRef(func() {
		s.mfp.MemoryFile().DecRef(s.fr)
		s.registry.remove(s)
	})
}

// Msync implements memmap.MappingIdentity.Msync. Msync is a no-op for shm
// segments.
func (s *Shm) Msync(context.Context, memmap.MappableRange) error {
	return nil
}

// AddMapping implements memmap.Mappable.AddMapping.
func (s *Shm) AddMapping(ctx context.Context, _ memmap.MappingSpace, _ hostarch.AddrRange, _ uint64, _ bool) error {
	s.mu.Lock()
	defer s.mu.Unlock()
	s.attachTime = ktime.NowFromContext(ctx)
	if pid, ok := context.ThreadGroupIDFromContext(ctx); ok {
		s.lastAttachDetachPID = pid
	} else {
		// AddMapping is called during a syscall, so ctx should always be a task
		// context.
		log.Warningf("Adding mapping to %s but couldn't get the current pid; not updating the last attach pid", s.debugLocked())
	}
	return nil
}

// RemoveMapping implements memmap.Mappable.RemoveMapping.
func (s *Shm) RemoveMapping(ctx context.Context, _ memmap.MappingSpace, _ hostarch.AddrRange, _ uint64, _ bool) {
	s.mu.Lock()
	defer s.mu.Unlock()
	// RemoveMapping may be called during task exit, when ctx
	// is context.Background. Gracefully handle missing clocks. Failing to
	// update the detach time in these cases is ok, since no one can observe the
	// omission.
	if clock := ktime.RealtimeClockFromContext(ctx); clock != nil {
		s.detachTime = clock.Now()
	}

	// If called from a non-task context we also won't have a threadgroup
	// id. Silently skip updating the lastAttachDetachPid in that case.
	if pid, ok := context.ThreadGroupIDFromContext(ctx); ok {
		s.lastAttachDetachPID = pid
	} else {
		log.Debugf("Couldn't obtain pid when removing mapping to %s, not updating the last detach pid.", s.debugLocked())
	}
}

// CopyMapping implements memmap.Mappable.CopyMapping.
func (*Shm) CopyMapping(context.Context, memmap.MappingSpace, hostarch.AddrRange, hostarch.AddrRange, uint64, bool) error {
	return nil
}

// Translate implements memmap.Mappable.Translate.
func (s *Shm) Translate(ctx context.Context, required, optional memmap.MappableRange, at hostarch.AccessType) ([]memmap.Translation, error) {
	var err error
	if required.End > s.fr.Length() {
		err = &memmap.BusError{syserror.EFAULT}
	}
	if source := optional.Intersect(memmap.MappableRange{0, s.fr.Length()}); source.Length() != 0 {
		return []memmap.Translation{
			{
				Source: source,
				File:   s.mfp.MemoryFile(),
				Offset: s.fr.Start + source.Start,
				Perms:  hostarch.AnyAccess,
			},
		}, err
	}
	return nil, err
}

// InvalidateUnsavable implements memmap.Mappable.InvalidateUnsavable.
func (s *Shm) InvalidateUnsavable(ctx context.Context) error {
	return nil
}

// AttachOpts describes various flags passed to shmat(2).
type AttachOpts struct {
	Execute  bool
	Readonly bool
	Remap    bool
}

// ConfigureAttach creates an mmap configuration for the segment with the
// requested attach options.
//
// Postconditions: The returned MMapOpts are valid only as long as a reference
// continues to be held on s.
func (s *Shm) ConfigureAttach(ctx context.Context, addr hostarch.Addr, opts AttachOpts) (memmap.MMapOpts, error) {
	s.mu.Lock()
	defer s.mu.Unlock()
	if s.pendingDestruction && s.ReadRefs() == 0 {
		return memmap.MMapOpts{}, syserror.EIDRM
	}

	if !s.checkPermissions(ctx, fs.PermMask{
		Read:    true,
		Write:   !opts.Readonly,
		Execute: opts.Execute,
	}) {
		// "The calling process does not have the required permissions for the
		// requested attach type, and does not have the CAP_IPC_OWNER capability
		// in the user namespace that governs its IPC namespace." - man shmat(2)
		return memmap.MMapOpts{}, syserror.EACCES
	}
	return memmap.MMapOpts{
		Length: s.size,
		Offset: 0,
		Addr:   addr,
		Fixed:  opts.Remap,
		Perms: hostarch.AccessType{
			Read:    true,
			Write:   !opts.Readonly,
			Execute: opts.Execute,
		},
		MaxPerms:        hostarch.AnyAccess,
		Mappable:        s,
		MappingIdentity: s,
	}, nil
}

// EffectiveSize returns the size of the underlying shared memory segment. This
// may be larger than the requested size at creation, due to rounding to page
// boundaries.
func (s *Shm) EffectiveSize() uint64 {
	return s.effectiveSize
}

// IPCStat returns information about a shm. See shmctl(IPC_STAT).
func (s *Shm) IPCStat(ctx context.Context) (*linux.ShmidDS, error) {
	s.mu.Lock()
	defer s.mu.Unlock()

	// "The caller must have read permission on the shared memory segment."
	//   - man shmctl(2)
	if !s.checkPermissions(ctx, fs.PermMask{Read: true}) {
		// "IPC_STAT or SHM_STAT is requested and shm_perm.mode does not allow
		// read access for shmid, and the calling process does not have the
		// CAP_IPC_OWNER capability in the user namespace that governs its IPC
		// namespace." - man shmctl(2)
		return nil, syserror.EACCES
	}

	var mode uint16
	if s.pendingDestruction {
		mode |= linux.SHM_DEST
	}
	creds := auth.CredentialsFromContext(ctx)

	// Use the reference count as a rudimentary count of the number of
	// attaches. We exclude:
	//
	// 1. The reference the caller holds.
	// 2. The self-reference held by s prior to destruction.
	//
	// Note that this may still overcount by including transient references
	// used in concurrent calls.
	nattach := uint64(s.ReadRefs()) - 1
	if !s.pendingDestruction {
		nattach--
	}

	ds := &linux.ShmidDS{
		ShmPerm: linux.IPCPerm{
			Key:  uint32(s.key),
			UID:  uint32(creds.UserNamespace.MapFromKUID(s.owner.UID)),
			GID:  uint32(creds.UserNamespace.MapFromKGID(s.owner.GID)),
			CUID: uint32(creds.UserNamespace.MapFromKUID(s.creator.UID)),
			CGID: uint32(creds.UserNamespace.MapFromKGID(s.creator.GID)),
			Mode: mode | uint16(s.perms.LinuxMode()),
			Seq:  0, // IPC sequences not supported.
		},
		ShmSegsz:   s.size,
		ShmAtime:   s.attachTime.TimeT(),
		ShmDtime:   s.detachTime.TimeT(),
		ShmCtime:   s.changeTime.TimeT(),
		ShmCpid:    s.creatorPID,
		ShmLpid:    s.lastAttachDetachPID,
		ShmNattach: nattach,
	}

	return ds, nil
}

// Set modifies attributes for a segment. See shmctl(IPC_SET).
func (s *Shm) Set(ctx context.Context, ds *linux.ShmidDS) error {
	s.mu.Lock()
	defer s.mu.Unlock()

	if !s.checkOwnership(ctx) {
		return syserror.EPERM
	}

	creds := auth.CredentialsFromContext(ctx)
	uid := creds.UserNamespace.MapToKUID(auth.UID(ds.ShmPerm.UID))
	gid := creds.UserNamespace.MapToKGID(auth.GID(ds.ShmPerm.GID))
	if !uid.Ok() || !gid.Ok() {
		return linuxerr.EINVAL
	}

	// User may only modify the lower 9 bits of the mode. All the other bits are
	// always 0 for the underlying inode.
	mode := linux.FileMode(ds.ShmPerm.Mode & 0x1ff)
	s.perms = fs.FilePermsFromMode(mode)

	s.owner.UID = uid
	s.owner.GID = gid

	s.changeTime = ktime.NowFromContext(ctx)
	return nil
}

// MarkDestroyed marks a segment for destruction. The segment is actually
// destroyed once it has no references. MarkDestroyed may be called multiple
// times, and is safe to call after a segment has already been destroyed. See
// shmctl(IPC_RMID).
func (s *Shm) MarkDestroyed(ctx context.Context) {
	s.registry.dissociateKey(s)

	s.mu.Lock()
	if s.pendingDestruction {
		s.mu.Unlock()
		return
	}
	s.pendingDestruction = true
	s.mu.Unlock()

	// Drop the self-reference so destruction occurs when all
	// external references are gone.
	//
	// N.B. This cannot be the final DecRef, as the caller also
	// holds a reference.
	s.DecRef(ctx)
	return
}

// checkOwnership verifies whether a segment may be accessed by ctx as an
// owner. See ipc/util.c:ipcctl_pre_down_nolock() in Linux.
//
// Precondition: Caller must hold s.mu.
func (s *Shm) checkOwnership(ctx context.Context) bool {
	creds := auth.CredentialsFromContext(ctx)
	if s.owner.UID == creds.EffectiveKUID || s.creator.UID == creds.EffectiveKUID {
		return true
	}

	// Tasks with CAP_SYS_ADMIN may bypass ownership checks. Strangely, Linux
	// doesn't use CAP_IPC_OWNER for this despite CAP_IPC_OWNER being documented
	// for use to "override IPC ownership checks".
	return creds.HasCapabilityIn(linux.CAP_SYS_ADMIN, s.registry.userNS)
}

// checkPermissions verifies whether a segment is accessible by ctx for access
// described by req. See ipc/util.c:ipcperms() in Linux.
//
// Precondition: Caller must hold s.mu.
func (s *Shm) checkPermissions(ctx context.Context, req fs.PermMask) bool {
	creds := auth.CredentialsFromContext(ctx)

	p := s.perms.Other
	if s.owner.UID == creds.EffectiveKUID {
		p = s.perms.User
	} else if creds.InGroup(s.owner.GID) {
		p = s.perms.Group
	}
	if p.SupersetOf(req) {
		return true
	}

	// Tasks with CAP_IPC_OWNER may bypass permission checks.
	return creds.HasCapabilityIn(linux.CAP_IPC_OWNER, s.registry.userNS)
}