1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
|
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
import (
"gvisor.googlesource.com/gvisor/pkg/abi/linux"
"gvisor.googlesource.com/gvisor/pkg/refs"
"gvisor.googlesource.com/gvisor/pkg/sentry/arch"
"gvisor.googlesource.com/gvisor/pkg/syserror"
)
// SessionID is the public identifier.
type SessionID ThreadID
// ProcessGroupID is the public identifier.
type ProcessGroupID ThreadID
// Session contains a leader threadgroup and a list of ProcessGroups.
//
// +stateify savable
type Session struct {
refs refs.AtomicRefCount
// leader is the originator of the Session.
//
// Note that this may no longer be running (and may be reaped), so the
// ID is cached upon initial creation. The leader is still required
// however, since its PIDNamespace defines the scope of the Session.
//
// The leader is immutable.
leader *ThreadGroup
// id is the cached identifier in the leader's namespace.
//
// The id is immutable.
id SessionID
// ProcessGroups is a list of process groups in this Session. This is
// protected by TaskSet.mu.
processGroups processGroupList
// sessionEntry is the embed for TaskSet.sessions. This is protected by
// TaskSet.mu.
sessionEntry
}
// incRef grabs a reference.
func (s *Session) incRef() {
s.refs.IncRef()
}
// decRef drops a reference.
//
// Precondition: callers must hold TaskSet.mu for writing.
func (s *Session) decRef() {
s.refs.DecRefWithDestructor(func() {
// Remove translations from the leader.
for ns := s.leader.pidns; ns != nil; ns = ns.parent {
id := ns.sids[s]
delete(ns.sids, s)
delete(ns.sessions, id)
}
// Remove from the list of global Sessions.
s.leader.pidns.owner.sessions.Remove(s)
})
}
// ProcessGroup contains an originator threadgroup and a parent Session.
//
// +stateify savable
type ProcessGroup struct {
refs refs.AtomicRefCount // not exported.
// originator is the originator of the group.
//
// See note re: leader in Session. The same applies here.
//
// The originator is immutable.
originator *ThreadGroup
// id is the cached identifier in the originator's namespace.
//
// The id is immutable.
id ProcessGroupID
// Session is the parent Session.
//
// The session is immutable.
session *Session
// ancestors is the number of thread groups in this process group whose
// parent is in a different process group in the same session.
//
// The name is derived from the fact that process groups where
// ancestors is zero are considered "orphans".
//
// ancestors is protected by TaskSet.mu.
ancestors uint32
// processGroupEntry is the embedded entry for Sessions.groups. This is
// protected by TaskSet.mu.
processGroupEntry
}
// Originator retuns the originator of the process group.
func (pg *ProcessGroup) Originator() *ThreadGroup {
return pg.originator
}
// IsOrphan returns true if this process group is an orphan.
func (pg *ProcessGroup) IsOrphan() bool {
pg.originator.TaskSet().mu.RLock()
defer pg.originator.TaskSet().mu.RUnlock()
return pg.ancestors == 0
}
// incRefWithParent grabs a reference.
//
// This function is called when this ProcessGroup is being associated with some
// new ThreadGroup, tg. parentPG is the ProcessGroup of tg's parent
// ThreadGroup. If tg is init, then parentPG may be nil.
//
// Precondition: callers must hold TaskSet.mu for writing.
func (pg *ProcessGroup) incRefWithParent(parentPG *ProcessGroup) {
// We acquire an "ancestor" reference in the case of a nil parent.
// This is because the process being associated is init, and init can
// never be orphaned (we count it as always having an ancestor).
if pg != parentPG && (parentPG == nil || pg.session == parentPG.session) {
pg.ancestors++
}
pg.refs.IncRef()
}
// decRefWithParent drops a reference.
//
// parentPG is per incRefWithParent.
//
// Precondition: callers must hold TaskSet.mu for writing.
func (pg *ProcessGroup) decRefWithParent(parentPG *ProcessGroup) {
// See incRefWithParent regarding parent == nil.
if pg != parentPG && (parentPG == nil || pg.session == parentPG.session) {
pg.ancestors--
}
alive := true
pg.refs.DecRefWithDestructor(func() {
alive = false // don't bother with handleOrphan.
// Remove translations from the originator.
for ns := pg.originator.pidns; ns != nil; ns = ns.parent {
id := ns.pgids[pg]
delete(ns.pgids, pg)
delete(ns.processGroups, id)
}
// Remove the list of process groups.
pg.session.processGroups.Remove(pg)
pg.session.decRef()
})
if alive {
pg.handleOrphan()
}
}
// parentPG returns the parent process group.
//
// Precondition: callers must hold TaskSet.mu.
func (tg *ThreadGroup) parentPG() *ProcessGroup {
if tg.leader.parent != nil {
return tg.leader.parent.tg.processGroup
}
return nil
}
// handleOrphan checks whether the process group is an orphan and has any
// stopped jobs. If yes, then appropriate signals are delivered to each thread
// group within the process group.
//
// Precondition: callers must hold TaskSet.mu for writing.
func (pg *ProcessGroup) handleOrphan() {
// Check if this process is an orphan.
if pg.ancestors != 0 {
return
}
// See if there are any stopped jobs.
hasStopped := false
pg.originator.pidns.owner.forEachThreadGroupLocked(func(tg *ThreadGroup) {
if tg.processGroup != pg {
return
}
tg.signalHandlers.mu.Lock()
if tg.groupStopComplete {
hasStopped = true
}
tg.signalHandlers.mu.Unlock()
})
if !hasStopped {
return
}
// Deliver appropriate signals to all thread groups.
pg.originator.pidns.owner.forEachThreadGroupLocked(func(tg *ThreadGroup) {
if tg.processGroup != pg {
return
}
tg.signalHandlers.mu.Lock()
tg.leader.sendSignalLocked(SignalInfoPriv(linux.SIGHUP), true /* group */)
tg.leader.sendSignalLocked(SignalInfoPriv(linux.SIGCONT), true /* group */)
tg.signalHandlers.mu.Unlock()
})
return
}
// Session returns the process group's session without taking a reference.
func (pg *ProcessGroup) Session() *Session {
return pg.session
}
// SendSignal sends a signal to all processes inside the process group. It is
// analagous to kernel/signal.c:kill_pgrp.
func (pg *ProcessGroup) SendSignal(info *arch.SignalInfo) error {
tasks := pg.originator.TaskSet()
tasks.mu.RLock()
defer tasks.mu.RUnlock()
var lastErr error
for tg := range tasks.Root.tgids {
if tg.ProcessGroup() == pg {
tg.signalHandlers.mu.Lock()
infoCopy := *info
if err := tg.leader.sendSignalLocked(&infoCopy, true /*group*/); err != nil {
lastErr = err
}
tg.signalHandlers.mu.Unlock()
}
}
return lastErr
}
// CreateSession creates a new Session, with the ThreadGroup as the leader.
//
// EPERM may be returned if either the given ThreadGroup is already a Session
// leader, or a ProcessGroup already exists for the ThreadGroup's ID.
func (tg *ThreadGroup) CreateSession() error {
tg.pidns.owner.mu.Lock()
defer tg.pidns.owner.mu.Unlock()
return tg.createSession()
}
// createSession creates a new session for a threadgroup.
//
// Precondition: callers must hold TaskSet.mu for writing.
func (tg *ThreadGroup) createSession() error {
// Get the ID for this thread in the current namespace.
id := tg.pidns.tgids[tg]
// Check if this ThreadGroup already leads a Session, or
// if the proposed group is already taken.
for s := tg.pidns.owner.sessions.Front(); s != nil; s = s.Next() {
if s.leader.pidns != tg.pidns {
continue
}
if s.leader == tg {
return syserror.EPERM
}
if s.id == SessionID(id) {
return syserror.EPERM
}
for pg := s.processGroups.Front(); pg != nil; pg = pg.Next() {
if pg.id == ProcessGroupID(id) {
return syserror.EPERM
}
}
}
// Create a new Session, with a single reference.
s := &Session{
id: SessionID(id),
leader: tg,
}
// Create a new ProcessGroup, belonging to that Session.
// This also has a single reference (assigned below).
//
// Note that since this is a new session and a new process group, there
// will be zero ancestors for this process group. (It is an orphan at
// this point.)
pg := &ProcessGroup{
id: ProcessGroupID(id),
originator: tg,
session: s,
ancestors: 0,
}
// Tie them and return the result.
s.processGroups.PushBack(pg)
tg.pidns.owner.sessions.PushBack(s)
// Leave the current group, and assign the new one.
if tg.processGroup != nil {
oldParentPG := tg.parentPG()
tg.forEachChildThreadGroupLocked(func(childTG *ThreadGroup) {
childTG.processGroup.incRefWithParent(pg)
childTG.processGroup.decRefWithParent(oldParentPG)
})
tg.processGroup.decRefWithParent(oldParentPG)
tg.processGroup = pg
} else {
// The current process group may be nil only in the case of an
// unparented thread group (i.e. the init process). This would
// not normally occur, but we allow it for the convenience of
// CreateSession working from that point. There will be no
// child processes. We always say that the very first group
// created has ancestors (avoids checks elsewhere).
//
// Note that this mirrors the parent == nil logic in
// incRef/decRef/reparent, which counts nil as an ancestor.
tg.processGroup = pg
tg.processGroup.ancestors++
}
// Ensure a translation is added to all namespaces.
for ns := tg.pidns; ns != nil; ns = ns.parent {
local := ns.tgids[tg]
ns.sids[s] = SessionID(local)
ns.sessions[SessionID(local)] = s
ns.pgids[pg] = ProcessGroupID(local)
ns.processGroups[ProcessGroupID(local)] = pg
}
return nil
}
// CreateProcessGroup creates a new process group.
//
// An EPERM error will be returned if the ThreadGroup belongs to a different
// Session, is a Session leader or the group already exists.
func (tg *ThreadGroup) CreateProcessGroup() error {
tg.pidns.owner.mu.Lock()
defer tg.pidns.owner.mu.Unlock()
// Get the ID for this thread in the current namespace.
id := tg.pidns.tgids[tg]
// Per above, check for a Session leader or existing group.
for s := tg.pidns.owner.sessions.Front(); s != nil; s = s.Next() {
if s.leader.pidns != tg.pidns {
continue
}
if s.leader == tg {
return syserror.EPERM
}
for pg := s.processGroups.Front(); pg != nil; pg = pg.Next() {
if pg.id == ProcessGroupID(id) {
return syserror.EPERM
}
}
}
// Create a new ProcessGroup, belonging to the current Session.
//
// We manually adjust the ancestors if the parent is in the same
// session.
tg.processGroup.session.incRef()
pg := &ProcessGroup{
id: ProcessGroupID(id),
originator: tg,
session: tg.processGroup.session,
}
if tg.leader.parent != nil && tg.leader.parent.tg.processGroup.session == pg.session {
pg.ancestors++
}
// Assign the new process group; adjust children.
oldParentPG := tg.parentPG()
tg.forEachChildThreadGroupLocked(func(childTG *ThreadGroup) {
childTG.processGroup.incRefWithParent(pg)
childTG.processGroup.decRefWithParent(oldParentPG)
})
tg.processGroup.decRefWithParent(oldParentPG)
tg.processGroup = pg
// Add the new process group to the session.
pg.session.processGroups.PushBack(pg)
// Ensure this translation is added to all namespaces.
for ns := tg.pidns; ns != nil; ns = ns.parent {
local := ns.tgids[tg]
ns.pgids[pg] = ProcessGroupID(local)
ns.processGroups[ProcessGroupID(local)] = pg
}
return nil
}
// JoinProcessGroup joins an existing process group.
//
// This function will return EACCES if an exec has been performed since fork
// by the given ThreadGroup, and EPERM if the Sessions are not the same or the
// group does not exist.
//
// If checkExec is set, then the join is not permitted after the process has
// executed exec at least once.
func (tg *ThreadGroup) JoinProcessGroup(pidns *PIDNamespace, pgid ProcessGroupID, checkExec bool) error {
pidns.owner.mu.Lock()
defer pidns.owner.mu.Unlock()
// Lookup the ProcessGroup.
pg := pidns.processGroups[pgid]
if pg == nil {
return syserror.EPERM
}
// Disallow the join if an execve has performed, per POSIX.
if checkExec && tg.execed {
return syserror.EACCES
}
// See if it's in the same session as ours.
if pg.session != tg.processGroup.session {
return syserror.EPERM
}
// Join the group; adjust children.
parentPG := tg.parentPG()
pg.incRefWithParent(parentPG)
tg.forEachChildThreadGroupLocked(func(childTG *ThreadGroup) {
childTG.processGroup.incRefWithParent(pg)
childTG.processGroup.decRefWithParent(tg.processGroup)
})
tg.processGroup.decRefWithParent(parentPG)
tg.processGroup = pg
return nil
}
// Session returns the ThreadGroup's Session.
//
// A reference is not taken on the session.
func (tg *ThreadGroup) Session() *Session {
tg.pidns.owner.mu.RLock()
defer tg.pidns.owner.mu.RUnlock()
return tg.processGroup.session
}
// IDOfSession returns the Session assigned to s in PID namespace ns.
//
// If this group isn't visible in this namespace, zero will be returned. It is
// the callers responsibility to check that before using this function.
func (pidns *PIDNamespace) IDOfSession(s *Session) SessionID {
pidns.owner.mu.RLock()
defer pidns.owner.mu.RUnlock()
return pidns.sids[s]
}
// SessionWithID returns the Session with the given ID in the PID namespace ns,
// or nil if that given ID is not defined in this namespace.
//
// A reference is not taken on the session.
func (pidns *PIDNamespace) SessionWithID(id SessionID) *Session {
pidns.owner.mu.RLock()
defer pidns.owner.mu.RUnlock()
return pidns.sessions[id]
}
// ProcessGroup returns the ThreadGroup's ProcessGroup.
//
// A reference is not taken on the process group.
func (tg *ThreadGroup) ProcessGroup() *ProcessGroup {
tg.pidns.owner.mu.RLock()
defer tg.pidns.owner.mu.RUnlock()
return tg.processGroup
}
// IDOfProcessGroup returns the process group assigned to pg in PID namespace ns.
//
// The same constraints apply as IDOfSession.
func (pidns *PIDNamespace) IDOfProcessGroup(pg *ProcessGroup) ProcessGroupID {
pidns.owner.mu.RLock()
defer pidns.owner.mu.RUnlock()
return pidns.pgids[pg]
}
// ProcessGroupWithID returns the ProcessGroup with the given ID in the PID
// namespace ns, or nil if that given ID is not defined in this namespace.
//
// A reference is not taken on the process group.
func (pidns *PIDNamespace) ProcessGroupWithID(id ProcessGroupID) *ProcessGroup {
pidns.owner.mu.RLock()
defer pidns.owner.mu.RUnlock()
return pidns.processGroups[id]
}
|