1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
import (
"math"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/sentry/arch"
ktime "gvisor.dev/gvisor/pkg/sentry/kernel/time"
"gvisor.dev/gvisor/pkg/syserror"
)
// IntervalTimer represents a POSIX interval timer as described by
// timer_create(2).
//
// +stateify savable
type IntervalTimer struct {
timer *ktime.Timer
// If target is not nil, it receives signo from timer expirations. If group
// is true, these signals are thread-group-directed. These fields are
// immutable.
target *Task
signo linux.Signal
id linux.TimerID
sigval uint64
group bool
// If sigpending is true, a signal to target is already queued, and timer
// expirations should increment overrunCur instead of sending another
// signal. sigpending is protected by target's signal mutex. (If target is
// nil, the timer will never send signals, so sigpending will be unused.)
sigpending bool
// If sigorphan is true, timer's setting has been changed since sigpending
// last became true, such that overruns should no longer be counted in the
// pending signals si_overrun. sigorphan is protected by target's signal
// mutex.
sigorphan bool
// overrunCur is the number of overruns that have occurred since the last
// time a signal was sent. overrunCur is protected by target's signal
// mutex.
overrunCur uint64
// Consider the last signal sent by this timer that has been dequeued.
// overrunLast is the number of overruns that occurred between when this
// signal was sent and when it was dequeued. Equivalently, overrunLast was
// the value of overrunCur when this signal was dequeued. overrunLast is
// protected by target's signal mutex.
overrunLast uint64
}
// DestroyTimer releases it's resources.
func (it *IntervalTimer) DestroyTimer() {
it.timer.Destroy()
it.timerSettingChanged()
// A destroyed IntervalTimer is still potentially reachable via a
// pendingSignal; nil out timer so that it won't be saved.
it.timer = nil
}
func (it *IntervalTimer) timerSettingChanged() {
if it.target == nil {
return
}
it.target.tg.pidns.owner.mu.RLock()
defer it.target.tg.pidns.owner.mu.RUnlock()
it.target.tg.signalHandlers.mu.Lock()
defer it.target.tg.signalHandlers.mu.Unlock()
it.sigorphan = true
it.overrunCur = 0
it.overrunLast = 0
}
// PauseTimer pauses the associated Timer.
func (it *IntervalTimer) PauseTimer() {
it.timer.Pause()
}
// ResumeTimer resumes the associated Timer.
func (it *IntervalTimer) ResumeTimer() {
it.timer.Resume()
}
// Preconditions: it.target's signal mutex must be locked.
func (it *IntervalTimer) updateDequeuedSignalLocked(si *arch.SignalInfo) {
it.sigpending = false
if it.sigorphan {
return
}
it.overrunLast = it.overrunCur
it.overrunCur = 0
si.SetOverrun(saturateI32FromU64(it.overrunLast))
}
// Preconditions: it.target's signal mutex must be locked.
func (it *IntervalTimer) signalRejectedLocked() {
it.sigpending = false
if it.sigorphan {
return
}
it.overrunCur++
}
// Notify implements ktime.TimerListener.Notify.
func (it *IntervalTimer) Notify(exp uint64) {
if it.target == nil {
return
}
it.target.tg.pidns.owner.mu.RLock()
defer it.target.tg.pidns.owner.mu.RUnlock()
it.target.tg.signalHandlers.mu.Lock()
defer it.target.tg.signalHandlers.mu.Unlock()
if it.sigpending {
it.overrunCur += exp
return
}
// sigpending must be set before sendSignalTimerLocked() so that it can be
// unset if the signal is discarded (in which case sendSignalTimerLocked()
// will return nil).
it.sigpending = true
it.sigorphan = false
it.overrunCur += exp - 1
si := &arch.SignalInfo{
Signo: int32(it.signo),
Code: arch.SignalInfoTimer,
}
si.SetTimerID(it.id)
si.SetSigval(it.sigval)
// si_overrun is set when the signal is dequeued.
if err := it.target.sendSignalTimerLocked(si, it.group, it); err != nil {
it.signalRejectedLocked()
}
}
// Destroy implements ktime.TimerListener.Destroy. Users of Timer should call
// DestroyTimer instead.
func (it *IntervalTimer) Destroy() {
}
// IntervalTimerCreate implements timer_create(2).
func (t *Task) IntervalTimerCreate(c ktime.Clock, sigev *linux.Sigevent) (linux.TimerID, error) {
t.tg.timerMu.Lock()
defer t.tg.timerMu.Unlock()
// Allocate a timer ID.
var id linux.TimerID
end := t.tg.nextTimerID
for {
id = t.tg.nextTimerID
_, ok := t.tg.timers[id]
t.tg.nextTimerID++
if t.tg.nextTimerID < 0 {
t.tg.nextTimerID = 0
}
if !ok {
break
}
if t.tg.nextTimerID == end {
return 0, syserror.EAGAIN
}
}
// "The implementation of the default case where evp [sic] is NULL is
// handled inside glibc, which invokes the underlying system call with a
// suitably populated sigevent structure." - timer_create(2). This is
// misleading; the timer_create syscall also handles a NULL sevp as
// described by the man page
// (kernel/time/posix-timers.c:sys_timer_create(), do_timer_create()). This
// must be handled here instead of the syscall wrapper since sigval is the
// timer ID, which isn't available until we allocate it in this function.
if sigev == nil {
sigev = &linux.Sigevent{
Signo: int32(linux.SIGALRM),
Notify: linux.SIGEV_SIGNAL,
Value: uint64(id),
}
}
// Construct the timer.
it := &IntervalTimer{
id: id,
sigval: sigev.Value,
}
switch sigev.Notify {
case linux.SIGEV_NONE:
// leave it.target = nil
case linux.SIGEV_SIGNAL, linux.SIGEV_THREAD:
// POSIX SIGEV_THREAD semantics are implemented in userspace by libc;
// to the kernel, SIGEV_THREAD and SIGEV_SIGNAL are equivalent. (See
// Linux's kernel/time/posix-timers.c:good_sigevent().)
it.target = t.tg.leader
it.group = true
case linux.SIGEV_THREAD_ID:
t.tg.pidns.owner.mu.RLock()
target, ok := t.tg.pidns.tasks[ThreadID(sigev.Tid)]
t.tg.pidns.owner.mu.RUnlock()
if !ok || target.tg != t.tg {
return 0, syserror.EINVAL
}
it.target = target
default:
return 0, syserror.EINVAL
}
if sigev.Notify != linux.SIGEV_NONE {
it.signo = linux.Signal(sigev.Signo)
if !it.signo.IsValid() {
return 0, syserror.EINVAL
}
}
it.timer = ktime.NewTimer(c, it)
t.tg.timers[id] = it
return id, nil
}
// IntervalTimerDelete implements timer_delete(2).
func (t *Task) IntervalTimerDelete(id linux.TimerID) error {
t.tg.timerMu.Lock()
defer t.tg.timerMu.Unlock()
it := t.tg.timers[id]
if it == nil {
return syserror.EINVAL
}
delete(t.tg.timers, id)
it.DestroyTimer()
return nil
}
// IntervalTimerSettime implements timer_settime(2).
func (t *Task) IntervalTimerSettime(id linux.TimerID, its linux.Itimerspec, abs bool) (linux.Itimerspec, error) {
t.tg.timerMu.Lock()
defer t.tg.timerMu.Unlock()
it := t.tg.timers[id]
if it == nil {
return linux.Itimerspec{}, syserror.EINVAL
}
newS, err := ktime.SettingFromItimerspec(its, abs, it.timer.Clock())
if err != nil {
return linux.Itimerspec{}, err
}
tm, oldS := it.timer.SwapAnd(newS, it.timerSettingChanged)
its = ktime.ItimerspecFromSetting(tm, oldS)
return its, nil
}
// IntervalTimerGettime implements timer_gettime(2).
func (t *Task) IntervalTimerGettime(id linux.TimerID) (linux.Itimerspec, error) {
t.tg.timerMu.Lock()
defer t.tg.timerMu.Unlock()
it := t.tg.timers[id]
if it == nil {
return linux.Itimerspec{}, syserror.EINVAL
}
tm, s := it.timer.Get()
its := ktime.ItimerspecFromSetting(tm, s)
return its, nil
}
// IntervalTimerGetoverrun implements timer_getoverrun(2).
//
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) IntervalTimerGetoverrun(id linux.TimerID) (int32, error) {
t.tg.timerMu.Lock()
defer t.tg.timerMu.Unlock()
it := t.tg.timers[id]
if it == nil {
return 0, syserror.EINVAL
}
// By timer_create(2) invariant, either it.target == nil (in which case
// it.overrunLast is immutably 0) or t.tg == it.target.tg; and the fact
// that t is executing timer_getoverrun(2) means that t.tg can't be
// completing execve, so t.tg.signalHandlers can't be changing, allowing us
// to lock t.tg.signalHandlers.mu without holding the TaskSet mutex.
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
// This is consistent with Linux after 78c9c4dfbf8c ("posix-timers:
// Sanitize overrun handling").
return saturateI32FromU64(it.overrunLast), nil
}
func saturateI32FromU64(x uint64) int32 {
if x > math.MaxInt32 {
return math.MaxInt32
}
return int32(x)
}
|