1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
|
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package pipe
import (
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/safemem"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/vfs"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/syserror"
"gvisor.dev/gvisor/pkg/usermem"
"gvisor.dev/gvisor/pkg/waiter"
)
// This file contains types enabling the pipe package to be used with the vfs
// package.
// VFSPipe represents the actual pipe, analagous to an inode. VFSPipes should
// not be copied.
//
// +stateify savable
type VFSPipe struct {
// mu protects the fields below.
mu sync.Mutex `state:"nosave"`
// pipe is the underlying pipe.
pipe Pipe
// Channels for synchronizing the creation of new readers and writers
// of this fifo. See waitFor and newHandleLocked.
//
// These are not saved/restored because all waiters are unblocked on
// save, and either automatically restart (via ERESTARTSYS) or return
// EINTR on resume. On restarts via ERESTARTSYS, the appropriate
// channel will be recreated.
rWakeup chan struct{} `state:"nosave"`
wWakeup chan struct{} `state:"nosave"`
}
// NewVFSPipe returns an initialized VFSPipe.
func NewVFSPipe(isNamed bool, sizeBytes int64) *VFSPipe {
var vp VFSPipe
initPipe(&vp.pipe, isNamed, sizeBytes)
return &vp
}
// ReaderWriterPair returns read-only and write-only FDs for vp.
//
// Preconditions: statusFlags should not contain an open access mode.
func (vp *VFSPipe) ReaderWriterPair(ctx context.Context, mnt *vfs.Mount, vfsd *vfs.Dentry, statusFlags uint32) (*vfs.FileDescription, *vfs.FileDescription, error) {
// Connected pipes share the same locks.
locks := &vfs.FileLocks{}
r, err := vp.newFD(mnt, vfsd, linux.O_RDONLY|statusFlags, locks)
if err != nil {
return nil, nil, err
}
w, err := vp.newFD(mnt, vfsd, linux.O_WRONLY|statusFlags, locks)
if err != nil {
r.DecRef(ctx)
return nil, nil, err
}
return r, w, nil
}
// Allocate implements vfs.FileDescriptionImpl.Allocate.
func (*VFSPipe) Allocate(context.Context, uint64, uint64, uint64) error {
return syserror.ESPIPE
}
// Open opens the pipe represented by vp.
func (vp *VFSPipe) Open(ctx context.Context, mnt *vfs.Mount, vfsd *vfs.Dentry, statusFlags uint32, locks *vfs.FileLocks) (*vfs.FileDescription, error) {
vp.mu.Lock()
defer vp.mu.Unlock()
readable := vfs.MayReadFileWithOpenFlags(statusFlags)
writable := vfs.MayWriteFileWithOpenFlags(statusFlags)
if !readable && !writable {
return nil, linuxerr.EINVAL
}
fd, err := vp.newFD(mnt, vfsd, statusFlags, locks)
if err != nil {
return nil, err
}
// Named pipes have special blocking semantics during open:
//
// "Normally, opening the FIFO blocks until the other end is opened also. A
// process can open a FIFO in nonblocking mode. In this case, opening for
// read-only will succeed even if no-one has opened on the write side yet,
// opening for write-only will fail with ENXIO (no such device or address)
// unless the other end has already been opened. Under Linux, opening a
// FIFO for read and write will succeed both in blocking and nonblocking
// mode. POSIX leaves this behavior undefined. This can be used to open a
// FIFO for writing while there are no readers available." - fifo(7)
switch {
case readable && writable:
// Pipes opened for read-write always succeed without blocking.
newHandleLocked(&vp.rWakeup)
newHandleLocked(&vp.wWakeup)
case readable:
newHandleLocked(&vp.rWakeup)
// If this pipe is being opened as blocking and there's no
// writer, we have to wait for a writer to open the other end.
if vp.pipe.isNamed && statusFlags&linux.O_NONBLOCK == 0 && !vp.pipe.HasWriters() && !waitFor(&vp.mu, &vp.wWakeup, ctx) {
fd.DecRef(ctx)
return nil, syserror.EINTR
}
case writable:
newHandleLocked(&vp.wWakeup)
if vp.pipe.isNamed && !vp.pipe.HasReaders() {
// Non-blocking, write-only opens fail with ENXIO when the read
// side isn't open yet.
if statusFlags&linux.O_NONBLOCK != 0 {
fd.DecRef(ctx)
return nil, syserror.ENXIO
}
// Wait for a reader to open the other end.
if !waitFor(&vp.mu, &vp.rWakeup, ctx) {
fd.DecRef(ctx)
return nil, syserror.EINTR
}
}
default:
panic("invalid pipe flags: must be readable, writable, or both")
}
return fd, nil
}
// Preconditions: vp.mu must be held.
func (vp *VFSPipe) newFD(mnt *vfs.Mount, vfsd *vfs.Dentry, statusFlags uint32, locks *vfs.FileLocks) (*vfs.FileDescription, error) {
fd := &VFSPipeFD{
pipe: &vp.pipe,
}
fd.LockFD.Init(locks)
if err := fd.vfsfd.Init(fd, statusFlags, mnt, vfsd, &vfs.FileDescriptionOptions{
DenyPRead: true,
DenyPWrite: true,
UseDentryMetadata: true,
}); err != nil {
return nil, err
}
switch {
case fd.vfsfd.IsReadable() && fd.vfsfd.IsWritable():
vp.pipe.rOpen()
vp.pipe.wOpen()
case fd.vfsfd.IsReadable():
vp.pipe.rOpen()
case fd.vfsfd.IsWritable():
vp.pipe.wOpen()
default:
panic("invalid pipe flags: must be readable, writable, or both")
}
return &fd.vfsfd, nil
}
// VFSPipeFD implements vfs.FileDescriptionImpl for pipes. It also implements
// non-atomic usermem.IO methods, allowing it to be passed as usermem.IO to
// other FileDescriptions for splice(2) and tee(2).
//
// +stateify savable
type VFSPipeFD struct {
vfsfd vfs.FileDescription
vfs.FileDescriptionDefaultImpl
vfs.DentryMetadataFileDescriptionImpl
vfs.LockFD
pipe *Pipe
}
// Release implements vfs.FileDescriptionImpl.Release.
func (fd *VFSPipeFD) Release(context.Context) {
var event waiter.EventMask
if fd.vfsfd.IsReadable() {
fd.pipe.rClose()
event |= waiter.WritableEvents
}
if fd.vfsfd.IsWritable() {
fd.pipe.wClose()
event |= waiter.ReadableEvents | waiter.EventHUp
}
if event == 0 {
panic("invalid pipe flags: must be readable, writable, or both")
}
fd.pipe.Notify(event)
}
// Readiness implements waiter.Waitable.Readiness.
func (fd *VFSPipeFD) Readiness(mask waiter.EventMask) waiter.EventMask {
switch {
case fd.vfsfd.IsReadable() && fd.vfsfd.IsWritable():
return fd.pipe.rwReadiness()
case fd.vfsfd.IsReadable():
return fd.pipe.rReadiness()
case fd.vfsfd.IsWritable():
return fd.pipe.wReadiness()
default:
panic("pipe FD is neither readable nor writable")
}
}
// Allocate implements vfs.FileDescriptionImpl.Allocate.
func (fd *VFSPipeFD) Allocate(ctx context.Context, mode, offset, length uint64) error {
return syserror.ESPIPE
}
// EventRegister implements waiter.Waitable.EventRegister.
func (fd *VFSPipeFD) EventRegister(e *waiter.Entry, mask waiter.EventMask) {
fd.pipe.EventRegister(e, mask)
}
// EventUnregister implements waiter.Waitable.EventUnregister.
func (fd *VFSPipeFD) EventUnregister(e *waiter.Entry) {
fd.pipe.EventUnregister(e)
}
// Read implements vfs.FileDescriptionImpl.Read.
func (fd *VFSPipeFD) Read(ctx context.Context, dst usermem.IOSequence, _ vfs.ReadOptions) (int64, error) {
return fd.pipe.Read(ctx, dst)
}
// Write implements vfs.FileDescriptionImpl.Write.
func (fd *VFSPipeFD) Write(ctx context.Context, src usermem.IOSequence, _ vfs.WriteOptions) (int64, error) {
return fd.pipe.Write(ctx, src)
}
// Ioctl implements vfs.FileDescriptionImpl.Ioctl.
func (fd *VFSPipeFD) Ioctl(ctx context.Context, uio usermem.IO, args arch.SyscallArguments) (uintptr, error) {
return fd.pipe.Ioctl(ctx, uio, args)
}
// PipeSize implements fcntl(F_GETPIPE_SZ).
func (fd *VFSPipeFD) PipeSize() int64 {
// Inline Pipe.FifoSize() since we don't have a fs.File.
fd.pipe.mu.Lock()
defer fd.pipe.mu.Unlock()
return fd.pipe.max
}
// SetPipeSize implements fcntl(F_SETPIPE_SZ).
func (fd *VFSPipeFD) SetPipeSize(size int64) (int64, error) {
return fd.pipe.SetFifoSize(size)
}
// SpliceToNonPipe performs a splice operation from fd to a non-pipe file.
func (fd *VFSPipeFD) SpliceToNonPipe(ctx context.Context, out *vfs.FileDescription, off, count int64) (int64, error) {
fd.pipe.mu.Lock()
// Cap the sequence at number of bytes actually available.
if count > fd.pipe.size {
count = fd.pipe.size
}
src := usermem.IOSequence{
IO: fd,
Addrs: hostarch.AddrRangeSeqOf(hostarch.AddrRange{0, hostarch.Addr(count)}),
}
var (
n int64
err error
)
if off == -1 {
n, err = out.Write(ctx, src, vfs.WriteOptions{})
} else {
n, err = out.PWrite(ctx, src, off, vfs.WriteOptions{})
}
if n > 0 {
fd.pipe.consumeLocked(n)
}
fd.pipe.mu.Unlock()
if n > 0 {
fd.pipe.Notify(waiter.WritableEvents)
}
return n, err
}
// SpliceFromNonPipe performs a splice operation from a non-pipe file to fd.
func (fd *VFSPipeFD) SpliceFromNonPipe(ctx context.Context, in *vfs.FileDescription, off, count int64) (int64, error) {
dst := usermem.IOSequence{
IO: fd,
Addrs: hostarch.AddrRangeSeqOf(hostarch.AddrRange{0, hostarch.Addr(count)}),
}
var (
n int64
err error
)
fd.pipe.mu.Lock()
if off == -1 {
n, err = in.Read(ctx, dst, vfs.ReadOptions{})
} else {
n, err = in.PRead(ctx, dst, off, vfs.ReadOptions{})
}
fd.pipe.mu.Unlock()
if n > 0 {
fd.pipe.Notify(waiter.ReadableEvents)
}
return n, err
}
// CopyIn implements usermem.IO.CopyIn. Note that it is the caller's
// responsibility to call fd.pipe.consumeLocked() and
// fd.pipe.Notify(waiter.WritableEvents) after the read is completed.
//
// Preconditions: fd.pipe.mu must be locked.
func (fd *VFSPipeFD) CopyIn(ctx context.Context, addr hostarch.Addr, dst []byte, opts usermem.IOOpts) (int, error) {
n, err := fd.pipe.peekLocked(int64(len(dst)), func(srcs safemem.BlockSeq) (uint64, error) {
return safemem.CopySeq(safemem.BlockSeqOf(safemem.BlockFromSafeSlice(dst)), srcs)
})
return int(n), err
}
// CopyOut implements usermem.IO.CopyOut. Note that it is the caller's
// responsibility to call fd.pipe.Notify(waiter.ReadableEvents) after the write
// is completed.
//
// Preconditions: fd.pipe.mu must be locked.
func (fd *VFSPipeFD) CopyOut(ctx context.Context, addr hostarch.Addr, src []byte, opts usermem.IOOpts) (int, error) {
n, err := fd.pipe.writeLocked(int64(len(src)), func(dsts safemem.BlockSeq) (uint64, error) {
return safemem.CopySeq(dsts, safemem.BlockSeqOf(safemem.BlockFromSafeSlice(src)))
})
return int(n), err
}
// ZeroOut implements usermem.IO.ZeroOut.
//
// Preconditions: fd.pipe.mu must be locked.
func (fd *VFSPipeFD) ZeroOut(ctx context.Context, addr hostarch.Addr, toZero int64, opts usermem.IOOpts) (int64, error) {
n, err := fd.pipe.writeLocked(toZero, func(dsts safemem.BlockSeq) (uint64, error) {
return safemem.ZeroSeq(dsts)
})
return n, err
}
// CopyInTo implements usermem.IO.CopyInTo. Note that it is the caller's
// responsibility to call fd.pipe.consumeLocked() and
// fd.pipe.Notify(waiter.WritableEvents) after the read is completed.
//
// Preconditions: fd.pipe.mu must be locked.
func (fd *VFSPipeFD) CopyInTo(ctx context.Context, ars hostarch.AddrRangeSeq, dst safemem.Writer, opts usermem.IOOpts) (int64, error) {
return fd.pipe.peekLocked(ars.NumBytes(), func(srcs safemem.BlockSeq) (uint64, error) {
return dst.WriteFromBlocks(srcs)
})
}
// CopyOutFrom implements usermem.IO.CopyOutFrom. Note that it is the caller's
// responsibility to call fd.pipe.Notify(waiter.ReadableEvents) after the write
// is completed.
//
// Preconditions: fd.pipe.mu must be locked.
func (fd *VFSPipeFD) CopyOutFrom(ctx context.Context, ars hostarch.AddrRangeSeq, src safemem.Reader, opts usermem.IOOpts) (int64, error) {
return fd.pipe.writeLocked(ars.NumBytes(), func(dsts safemem.BlockSeq) (uint64, error) {
return src.ReadToBlocks(dsts)
})
}
// SwapUint32 implements usermem.IO.SwapUint32.
func (fd *VFSPipeFD) SwapUint32(ctx context.Context, addr hostarch.Addr, new uint32, opts usermem.IOOpts) (uint32, error) {
// How did a pipe get passed as the virtual address space to futex(2)?
panic("VFSPipeFD.SwapUint32 called unexpectedly")
}
// CompareAndSwapUint32 implements usermem.IO.CompareAndSwapUint32.
func (fd *VFSPipeFD) CompareAndSwapUint32(ctx context.Context, addr hostarch.Addr, old, new uint32, opts usermem.IOOpts) (uint32, error) {
panic("VFSPipeFD.CompareAndSwapUint32 called unexpectedly")
}
// LoadUint32 implements usermem.IO.LoadUint32.
func (fd *VFSPipeFD) LoadUint32(ctx context.Context, addr hostarch.Addr, opts usermem.IOOpts) (uint32, error) {
panic("VFSPipeFD.LoadUint32 called unexpectedly")
}
// Splice reads up to count bytes from src and writes them to dst. It returns
// the number of bytes moved.
//
// Preconditions: count > 0.
func Splice(ctx context.Context, dst, src *VFSPipeFD, count int64) (int64, error) {
return spliceOrTee(ctx, dst, src, count, true /* removeFromSrc */)
}
// Tee reads up to count bytes from src and writes them to dst, without
// removing the read bytes from src. It returns the number of bytes copied.
//
// Preconditions: count > 0.
func Tee(ctx context.Context, dst, src *VFSPipeFD, count int64) (int64, error) {
return spliceOrTee(ctx, dst, src, count, false /* removeFromSrc */)
}
// Preconditions: count > 0.
func spliceOrTee(ctx context.Context, dst, src *VFSPipeFD, count int64, removeFromSrc bool) (int64, error) {
if dst.pipe == src.pipe {
return 0, linuxerr.EINVAL
}
lockTwoPipes(dst.pipe, src.pipe)
n, err := dst.pipe.writeLocked(count, func(dsts safemem.BlockSeq) (uint64, error) {
n, err := src.pipe.peekLocked(int64(dsts.NumBytes()), func(srcs safemem.BlockSeq) (uint64, error) {
return safemem.CopySeq(dsts, srcs)
})
if n > 0 && removeFromSrc {
src.pipe.consumeLocked(n)
}
return uint64(n), err
})
dst.pipe.mu.Unlock()
src.pipe.mu.Unlock()
if n > 0 {
dst.pipe.Notify(waiter.ReadableEvents)
if removeFromSrc {
src.pipe.Notify(waiter.WritableEvents)
}
}
return n, err
}
|