summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/kernel/pipe/pipe_util.go
blob: 3fa5d1d2f183545c4d26b48b08da5a7ca56f854a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package pipe

import (
	"io"
	"math"

	"golang.org/x/sys/unix"
	"gvisor.dev/gvisor/pkg/abi/linux"
	"gvisor.dev/gvisor/pkg/amutex"
	"gvisor.dev/gvisor/pkg/context"
	"gvisor.dev/gvisor/pkg/marshal/primitive"
	"gvisor.dev/gvisor/pkg/safemem"
	"gvisor.dev/gvisor/pkg/sentry/arch"
	"gvisor.dev/gvisor/pkg/sync"
	"gvisor.dev/gvisor/pkg/usermem"
	"gvisor.dev/gvisor/pkg/waiter"
)

// This file contains Pipe file functionality that is tied to neither VFS nor
// the old fs architecture.

// Release cleans up the pipe's state.
func (p *Pipe) Release(context.Context) {
	p.rClose()
	p.wClose()

	// Wake up readers and writers.
	p.Notify(waiter.ReadableEvents | waiter.WritableEvents)
}

// Read reads from the Pipe into dst.
func (p *Pipe) Read(ctx context.Context, dst usermem.IOSequence) (int64, error) {
	n, err := dst.CopyOutFrom(ctx, p)
	if n > 0 {
		p.Notify(waiter.WritableEvents)
	}
	return n, err
}

// ReadToBlocks implements safemem.Reader.ReadToBlocks for Pipe.Read.
func (p *Pipe) ReadToBlocks(dsts safemem.BlockSeq) (uint64, error) {
	n, err := p.read(int64(dsts.NumBytes()), func(srcs safemem.BlockSeq) (uint64, error) {
		return safemem.CopySeq(dsts, srcs)
	}, true /* removeFromSrc */)
	return uint64(n), err
}

func (p *Pipe) read(count int64, f func(srcs safemem.BlockSeq) (uint64, error), removeFromSrc bool) (int64, error) {
	p.mu.Lock()
	defer p.mu.Unlock()
	n, err := p.peekLocked(count, f)
	if n > 0 && removeFromSrc {
		p.consumeLocked(n)
	}
	return n, err
}

// WriteTo writes to w from the Pipe.
func (p *Pipe) WriteTo(ctx context.Context, w io.Writer, count int64, dup bool) (int64, error) {
	n, err := p.read(count, func(srcs safemem.BlockSeq) (uint64, error) {
		return safemem.FromIOWriter{w}.WriteFromBlocks(srcs)
	}, !dup /* removeFromSrc */)
	if n > 0 && !dup {
		p.Notify(waiter.WritableEvents)
	}
	return n, err
}

// Write writes to the Pipe from src.
func (p *Pipe) Write(ctx context.Context, src usermem.IOSequence) (int64, error) {
	n, err := src.CopyInTo(ctx, p)
	if n > 0 {
		p.Notify(waiter.ReadableEvents)
	}
	if err == unix.EPIPE {
		// If we are returning EPIPE send SIGPIPE to the task.
		if sendSig := linux.SignalNoInfoFuncFromContext(ctx); sendSig != nil {
			sendSig(linux.SIGPIPE)
		}
	}
	return n, err
}

// WriteFromBlocks implements safemem.Writer.WriteFromBlocks for Pipe.Write.
func (p *Pipe) WriteFromBlocks(srcs safemem.BlockSeq) (uint64, error) {
	n, err := p.write(int64(srcs.NumBytes()), func(dsts safemem.BlockSeq) (uint64, error) {
		return safemem.CopySeq(dsts, srcs)
	})
	return uint64(n), err
}

func (p *Pipe) write(count int64, f func(safemem.BlockSeq) (uint64, error)) (int64, error) {
	p.mu.Lock()
	defer p.mu.Unlock()
	return p.writeLocked(count, f)
}

// ReadFrom reads from r to the Pipe.
func (p *Pipe) ReadFrom(ctx context.Context, r io.Reader, count int64) (int64, error) {
	n, err := p.write(count, func(dsts safemem.BlockSeq) (uint64, error) {
		return safemem.FromIOReader{r}.ReadToBlocks(dsts)
	})
	if n > 0 {
		p.Notify(waiter.ReadableEvents)
	}
	return n, err
}

// Readiness returns the ready events in the underlying pipe.
func (p *Pipe) Readiness(mask waiter.EventMask) waiter.EventMask {
	return p.rwReadiness() & mask
}

// Ioctl implements ioctls on the Pipe.
func (p *Pipe) Ioctl(ctx context.Context, io usermem.IO, args arch.SyscallArguments) (uintptr, error) {
	// Switch on ioctl request.
	switch int(args[1].Int()) {
	case linux.FIONREAD:
		v := p.queued()
		if v > math.MaxInt32 {
			v = math.MaxInt32 // Silently truncate.
		}
		// Copy result to userspace.
		iocc := usermem.IOCopyContext{
			IO:  io,
			Ctx: ctx,
			Opts: usermem.IOOpts{
				AddressSpaceActive: true,
			},
		}
		_, err := primitive.CopyInt32Out(&iocc, args[2].Pointer(), int32(v))
		return 0, err
	default:
		return 0, unix.ENOTTY
	}
}

// waitFor blocks until the underlying pipe has at least one reader/writer is
// announced via 'wakeupChan', or until 'sleeper' is cancelled. Any call to this
// function will block for either readers or writers, depending on where
// 'wakeupChan' points.
//
// mu must be held by the caller. waitFor returns with mu held, but it will
// drop mu before blocking for any reader/writers.
func waitFor(mu *sync.Mutex, wakeupChan *chan struct{}, sleeper amutex.Sleeper) bool {
	// Ideally this function would simply use a condition variable. However, the
	// wait needs to be interruptible via 'sleeper', so we must sychronize via a
	// channel. The synchronization below relies on the fact that closing a
	// channel unblocks all receives on the channel.

	// Does an appropriate wakeup channel already exist? If not, create a new
	// one. This is all done under f.mu to avoid races.
	if *wakeupChan == nil {
		*wakeupChan = make(chan struct{})
	}

	// Grab a local reference to the wakeup channel since it may disappear as
	// soon as we drop f.mu.
	wakeup := *wakeupChan

	// Drop the lock and prepare to sleep.
	mu.Unlock()
	cancel := sleeper.SleepStart()

	// Wait for either a new reader/write to be signalled via 'wakeup', or
	// for the sleep to be cancelled.
	select {
	case <-wakeup:
		sleeper.SleepFinish(true)
	case <-cancel:
		sleeper.SleepFinish(false)
	}

	// Take the lock and check if we were woken. If we were woken and
	// interrupted, the former takes priority.
	mu.Lock()
	select {
	case <-wakeup:
		return true
	default:
		return false
	}
}

// newHandleLocked signals a new pipe reader or writer depending on where
// 'wakeupChan' points. This unblocks any corresponding reader or writer
// waiting for the other end of the channel to be opened, see Fifo.waitFor.
//
// Precondition: the mutex protecting wakeupChan must be held.
func newHandleLocked(wakeupChan *chan struct{}) {
	if *wakeupChan != nil {
		close(*wakeupChan)
		*wakeupChan = nil
	}
}