1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
|
// Copyright 2018 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package pipe provides an in-memory implementation of a unidirectional
// pipe.
//
// The goal of this pipe is to emulate the pipe syscall in all of its
// edge cases and guarantees of atomic IO.
package pipe
import (
"fmt"
"sync"
"sync/atomic"
"syscall"
"gvisor.googlesource.com/gvisor/pkg/abi/linux"
"gvisor.googlesource.com/gvisor/pkg/ilist"
"gvisor.googlesource.com/gvisor/pkg/sentry/context"
"gvisor.googlesource.com/gvisor/pkg/sentry/fs"
"gvisor.googlesource.com/gvisor/pkg/sentry/fs/fsutil"
"gvisor.googlesource.com/gvisor/pkg/sentry/usermem"
"gvisor.googlesource.com/gvisor/pkg/syserror"
"gvisor.googlesource.com/gvisor/pkg/waiter"
)
// DefaultPipeSize is the system-wide default size of a pipe in bytes.
const DefaultPipeSize = 65536
// Pipe is an encapsulation of a platform-independent pipe.
// It manages a buffered byte queue shared between a reader/writer
// pair.
//
// +stateify savable
type Pipe struct {
waiter.Queue `state:"nosave"`
// Whether this is a named or anonymous pipe.
isNamed bool
// The dirent backing this pipe. Shared by all readers and writers.
dirent *fs.Dirent
// The buffered byte queue.
data ilist.List
// Max size of the pipe in bytes. When this max has been reached,
// writers will get EWOULDBLOCK.
max int
// Current size of the pipe in bytes.
size int
// Max number of bytes the pipe can guarantee to read or write
// atomically.
atomicIOBytes int
// The number of active readers for this pipe. Load/store atomically.
readers int32
// The number of active writes for this pipe. Load/store atomically.
writers int32
// This flag indicates if this pipe ever had a writer. Note that this does
// not necessarily indicate there is *currently* a writer, just that there
// has been a writer at some point since the pipe was created.
//
// Protected by mu.
hadWriter bool
// Lock protecting all pipe internal state.
mu sync.Mutex `state:"nosave"`
}
// NewPipe initializes and returns a pipe. A pipe created by this function is
// persistent, and will remain valid even without any open fds to it. Named
// pipes for mknod(2) are created via this function. Note that the
// implementation of blocking semantics for opening the read and write ends of a
// named pipe are left to filesystems.
func NewPipe(ctx context.Context, isNamed bool, sizeBytes, atomicIOBytes int) *Pipe {
p := &Pipe{
isNamed: isNamed,
max: sizeBytes,
atomicIOBytes: atomicIOBytes,
}
// Build the fs.Dirent of this pipe, shared by all fs.Files associated
// with this pipe.
ino := pipeDevice.NextIno()
base := fsutil.NewSimpleInodeOperations(fsutil.InodeSimpleAttributes{
FSType: linux.PIPEFS_MAGIC,
UAttr: fs.WithCurrentTime(ctx, fs.UnstableAttr{
Owner: fs.FileOwnerFromContext(ctx),
Perms: fs.FilePermissions{
User: fs.PermMask{Read: true, Write: true},
},
Links: 1,
}),
})
sattr := fs.StableAttr{
Type: fs.Pipe,
DeviceID: pipeDevice.DeviceID(),
InodeID: ino,
BlockSize: int64(atomicIOBytes),
}
// There is no real filesystem backing this pipe, so we pass in a nil
// Filesystem.
sb := fs.NewNonCachingMountSource(nil, fs.MountSourceFlags{})
p.dirent = fs.NewDirent(fs.NewInode(NewInodeOperations(base, p), sb, sattr), fmt.Sprintf("pipe:[%d]", ino))
return p
}
// NewConnectedPipe initializes a pipe and returns a pair of objects (which
// implement kio.File) representing the read and write ends of the pipe. A pipe
// created by this function becomes invalid as soon as either the read or write
// end is closed, and errors on subsequent operations on either end. Pipes
// for pipe(2) and pipe2(2) are generally created this way.
func NewConnectedPipe(ctx context.Context, sizeBytes int, atomicIOBytes int) (*fs.File, *fs.File) {
p := NewPipe(ctx, false /* isNamed */, sizeBytes, atomicIOBytes)
return p.ROpen(ctx), p.WOpen(ctx)
}
// ROpen opens the pipe for reading.
func (p *Pipe) ROpen(ctx context.Context) *fs.File {
p.rOpen()
return fs.NewFile(ctx, p.dirent, fs.FileFlags{Read: true}, &Reader{
ReaderWriter: ReaderWriter{Pipe: p},
})
}
// WOpen opens the pipe for writing.
func (p *Pipe) WOpen(ctx context.Context) *fs.File {
p.wOpen()
return fs.NewFile(ctx, p.dirent, fs.FileFlags{Write: true}, &Writer{
ReaderWriter: ReaderWriter{Pipe: p},
})
}
// RWOpen opens the pipe for both reading and writing.
func (p *Pipe) RWOpen(ctx context.Context) *fs.File {
p.rOpen()
p.wOpen()
return fs.NewFile(ctx, p.dirent, fs.FileFlags{Read: true, Write: true}, &ReaderWriter{
Pipe: p,
})
}
// read reads data from the pipe into dst and returns the number of bytes
// read, or returns ErrWouldBlock if the pipe is empty.
func (p *Pipe) read(ctx context.Context, dst usermem.IOSequence) (int64, error) {
if !p.HasReaders() {
return 0, syscall.EBADF
}
// Don't block for a zero-length read even if the pipe is empty.
if dst.NumBytes() == 0 {
return 0, nil
}
p.mu.Lock()
defer p.mu.Unlock()
// If there is nothing to read at the moment but there is a writer, tell the
// caller to block.
if p.size == 0 {
if !p.HasWriters() {
// There are no writers, return EOF.
return 0, nil
}
return 0, syserror.ErrWouldBlock
}
var n int64
for b := p.data.Front(); b != nil; b = p.data.Front() {
buffer := b.(*Buffer)
n0, err := dst.CopyOut(ctx, buffer.bytes())
n += int64(n0)
p.size -= n0
if buffer.truncate(n0) == 0 {
p.data.Remove(b)
}
dst = dst.DropFirst(n0)
if dst.NumBytes() == 0 || err != nil {
return n, err
}
}
return n, nil
}
// write writes data from sv into the pipe and returns the number of bytes
// written. If no bytes are written because the pipe is full (or has less than
// atomicIOBytes free capacity), write returns ErrWouldBlock.
func (p *Pipe) write(ctx context.Context, src usermem.IOSequence) (int64, error) {
p.mu.Lock()
defer p.mu.Unlock()
if !p.HasWriters() {
return 0, syscall.EBADF
}
if !p.HasReaders() {
return 0, syscall.EPIPE
}
// POSIX requires that a write smaller than atomicIOBytes (PIPE_BUF) be
// atomic, but requires no atomicity for writes larger than this. However,
// Linux appears to provide stronger semantics than this in practice:
// unmerged writes are done one PAGE_SIZE buffer at a time, so for larger
// writes, the writing of each PIPE_BUF-sized chunk is atomic. We implement
// this by writing at most atomicIOBytes at a time if we can't service the
// write in its entirety.
canWrite := src.NumBytes()
if canWrite > int64(p.max-p.size) {
if p.max-p.size >= p.atomicIOBytes {
canWrite = int64(p.atomicIOBytes)
} else {
return 0, syserror.ErrWouldBlock
}
}
// Copy data from user memory into a pipe-owned buffer.
buf := make([]byte, canWrite)
n, err := src.CopyIn(ctx, buf)
if n > 0 {
p.data.PushBack(newBuffer(buf[:n]))
p.size += n
}
if int64(n) < src.NumBytes() && err == nil {
// Partial write due to full pipe.
err = syserror.ErrWouldBlock
}
return int64(n), err
}
// rOpen signals a new reader of the pipe.
func (p *Pipe) rOpen() {
atomic.AddInt32(&p.readers, 1)
}
// wOpen signals a new writer of the pipe.
func (p *Pipe) wOpen() {
p.mu.Lock()
defer p.mu.Unlock()
p.hadWriter = true
atomic.AddInt32(&p.writers, 1)
}
// rClose signals that a reader has closed their end of the pipe.
func (p *Pipe) rClose() {
newReaders := atomic.AddInt32(&p.readers, -1)
if newReaders < 0 {
panic(fmt.Sprintf("Refcounting bug, pipe has negative readers: %v", newReaders))
}
}
// wClose signals that a writer has closed their end of the pipe.
func (p *Pipe) wClose() {
newWriters := atomic.AddInt32(&p.writers, -1)
if newWriters < 0 {
panic(fmt.Sprintf("Refcounting bug, pipe has negative writers: %v.", newWriters))
}
}
// HasReaders returns whether the pipe has any active readers.
func (p *Pipe) HasReaders() bool {
return atomic.LoadInt32(&p.readers) > 0
}
// HasWriters returns whether the pipe has any active writers.
func (p *Pipe) HasWriters() bool {
return atomic.LoadInt32(&p.writers) > 0
}
func (p *Pipe) rReadinessLocked() waiter.EventMask {
ready := waiter.EventMask(0)
if p.HasReaders() && p.data.Front() != nil {
ready |= waiter.EventIn
}
if !p.HasWriters() && p.hadWriter {
// POLLHUP must be suppressed until the pipe has had at least one writer
// at some point. Otherwise a reader thread may poll and immediately get
// a POLLHUP before the writer ever opens the pipe, which the reader may
// interpret as the writer opening then closing the pipe.
ready |= waiter.EventHUp
}
return ready
}
// rReadiness returns a mask that states whether the read end of the pipe is
// ready for reading.
func (p *Pipe) rReadiness() waiter.EventMask {
p.mu.Lock()
defer p.mu.Unlock()
return p.rReadinessLocked()
}
func (p *Pipe) wReadinessLocked() waiter.EventMask {
ready := waiter.EventMask(0)
if p.HasWriters() && p.size < p.max {
ready |= waiter.EventOut
}
if !p.HasReaders() {
ready |= waiter.EventErr
}
return ready
}
// wReadiness returns a mask that states whether the write end of the pipe
// is ready for writing.
func (p *Pipe) wReadiness() waiter.EventMask {
p.mu.Lock()
defer p.mu.Unlock()
return p.wReadinessLocked()
}
// rwReadiness returns a mask that states whether a read-write handle to the
// pipe is ready for IO.
func (p *Pipe) rwReadiness() waiter.EventMask {
p.mu.Lock()
defer p.mu.Unlock()
return p.rReadinessLocked() | p.wReadinessLocked()
}
func (p *Pipe) queuedSize() int {
p.mu.Lock()
defer p.mu.Unlock()
return p.size
}
|