1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package pipe provides a pipe implementation.
package pipe
import (
"fmt"
"io"
"sync/atomic"
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/safemem"
"gvisor.dev/gvisor/pkg/sentry/fs"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/syserror"
"gvisor.dev/gvisor/pkg/waiter"
)
const (
// MinimumPipeSize is a hard limit of the minimum size of a pipe.
// It corresponds to fs/pipe.c:pipe_min_size.
MinimumPipeSize = hostarch.PageSize
// MaximumPipeSize is a hard limit on the maximum size of a pipe.
// It corresponds to fs/pipe.c:pipe_max_size.
MaximumPipeSize = 1048576
// DefaultPipeSize is the system-wide default size of a pipe in bytes.
// It corresponds to pipe_fs_i.h:PIPE_DEF_BUFFERS.
DefaultPipeSize = 16 * hostarch.PageSize
// atomicIOBytes is the maximum number of bytes that the pipe will
// guarantee atomic reads or writes atomically.
// It corresponds to limits.h:PIPE_BUF.
atomicIOBytes = 4096
)
// Pipe is an encapsulation of a platform-independent pipe.
// It manages a buffered byte queue shared between a reader/writer
// pair.
//
// +stateify savable
type Pipe struct {
waiter.Queue `state:"nosave"`
// isNamed indicates whether this is a named pipe.
//
// This value is immutable.
isNamed bool
// The number of active readers for this pipe.
//
// Access atomically.
readers int32
// The number of active writes for this pipe.
//
// Access atomically.
writers int32
// mu protects all pipe internal state below.
mu sync.Mutex `state:"nosave"`
// buf holds the pipe's data. buf is a circular buffer; the first valid
// byte in buf is at offset off, and the pipe contains size valid bytes.
// bufBlocks contains two identical safemem.Blocks representing buf; this
// avoids needing to heap-allocate a new safemem.Block slice when buf is
// resized. bufBlockSeq is a safemem.BlockSeq representing bufBlocks.
//
// These fields are protected by mu.
buf []byte
bufBlocks [2]safemem.Block `state:"nosave"`
bufBlockSeq safemem.BlockSeq `state:"nosave"`
off int64
size int64
// max is the maximum size of the pipe in bytes. When this max has been
// reached, writers will get EWOULDBLOCK.
//
// This is protected by mu.
max int64
// hadWriter indicates if this pipe ever had a writer. Note that this
// does not necessarily indicate there is *currently* a writer, just
// that there has been a writer at some point since the pipe was
// created.
//
// This is protected by mu.
hadWriter bool
}
// NewPipe initializes and returns a pipe.
//
// N.B. The size will be bounded.
func NewPipe(isNamed bool, sizeBytes int64) *Pipe {
var p Pipe
initPipe(&p, isNamed, sizeBytes)
return &p
}
func initPipe(pipe *Pipe, isNamed bool, sizeBytes int64) {
if sizeBytes < MinimumPipeSize {
sizeBytes = MinimumPipeSize
}
if sizeBytes > MaximumPipeSize {
sizeBytes = MaximumPipeSize
}
pipe.isNamed = isNamed
pipe.max = sizeBytes
}
// NewConnectedPipe initializes a pipe and returns a pair of objects
// representing the read and write ends of the pipe.
func NewConnectedPipe(ctx context.Context, sizeBytes int64) (*fs.File, *fs.File) {
p := NewPipe(false /* isNamed */, sizeBytes)
// Build an fs.Dirent for the pipe which will be shared by both
// returned files.
perms := fs.FilePermissions{
User: fs.PermMask{Read: true, Write: true},
}
iops := NewInodeOperations(ctx, perms, p)
ino := pipeDevice.NextIno()
sattr := fs.StableAttr{
Type: fs.Pipe,
DeviceID: pipeDevice.DeviceID(),
InodeID: ino,
BlockSize: int64(atomicIOBytes),
}
ms := fs.NewPseudoMountSource(ctx)
d := fs.NewDirent(ctx, fs.NewInode(ctx, iops, ms, sattr), fmt.Sprintf("pipe:[%d]", ino))
// The p.Open calls below will each take a reference on the Dirent. We
// must drop the one we already have.
defer d.DecRef(ctx)
return p.Open(ctx, d, fs.FileFlags{Read: true}), p.Open(ctx, d, fs.FileFlags{Write: true})
}
// Open opens the pipe and returns a new file.
//
// Precondition: at least one of flags.Read or flags.Write must be set.
func (p *Pipe) Open(ctx context.Context, d *fs.Dirent, flags fs.FileFlags) *fs.File {
flags.NonSeekable = true
switch {
case flags.Read && flags.Write:
p.rOpen()
p.wOpen()
return fs.NewFile(ctx, d, flags, &ReaderWriter{
Pipe: p,
})
case flags.Read:
p.rOpen()
return fs.NewFile(ctx, d, flags, &Reader{
ReaderWriter: ReaderWriter{Pipe: p},
})
case flags.Write:
p.wOpen()
return fs.NewFile(ctx, d, flags, &Writer{
ReaderWriter: ReaderWriter{Pipe: p},
})
default:
// Precondition violated.
panic("invalid pipe flags")
}
}
// peekLocked passes the first count bytes in the pipe to f and returns its
// result. If fewer than count bytes are available, the safemem.BlockSeq passed
// to f will be less than count bytes in length.
//
// peekLocked does not mutate the pipe; if the read consumes bytes from the
// pipe, then the caller is responsible for calling p.consumeLocked() and
// p.Notify(waiter.WritableEvents). (The latter must be called with p.mu unlocked.)
//
// Preconditions:
// * p.mu must be locked.
// * This pipe must have readers.
func (p *Pipe) peekLocked(count int64, f func(safemem.BlockSeq) (uint64, error)) (int64, error) {
// Don't block for a zero-length read even if the pipe is empty.
if count == 0 {
return 0, nil
}
// Limit the amount of data read to the amount of data in the pipe.
if count > p.size {
if p.size == 0 {
if !p.HasWriters() {
return 0, io.EOF
}
return 0, syserror.ErrWouldBlock
}
count = p.size
}
// Prepare the view of the data to be read.
bs := p.bufBlockSeq.DropFirst64(uint64(p.off)).TakeFirst64(uint64(count))
// Perform the read.
done, err := f(bs)
return int64(done), err
}
// consumeLocked consumes the first n bytes in the pipe, such that they will no
// longer be visible to future reads.
//
// Preconditions:
// * p.mu must be locked.
// * The pipe must contain at least n bytes.
func (p *Pipe) consumeLocked(n int64) {
p.off += n
if max := int64(len(p.buf)); p.off >= max {
p.off -= max
}
p.size -= n
}
// writeLocked passes a safemem.BlockSeq representing the first count bytes of
// unused space in the pipe to f and returns the result. If fewer than count
// bytes are free, the safemem.BlockSeq passed to f will be less than count
// bytes in length. If the pipe is full or otherwise cannot accomodate a write
// of any number of bytes up to count, writeLocked returns ErrWouldBlock
// without calling f.
//
// Unlike peekLocked, writeLocked assumes that f returns the number of bytes
// written to the pipe, and increases the number of bytes stored in the pipe
// accordingly. Callers are still responsible for calling
// p.Notify(waiter.ReadableEvents) with p.mu unlocked.
//
// Preconditions:
// * p.mu must be locked.
func (p *Pipe) writeLocked(count int64, f func(safemem.BlockSeq) (uint64, error)) (int64, error) {
// Can't write to a pipe with no readers.
if !p.HasReaders() {
return 0, unix.EPIPE
}
avail := p.max - p.size
if avail == 0 {
return 0, syserror.ErrWouldBlock
}
short := false
if count > avail {
// POSIX requires that a write smaller than atomicIOBytes
// (PIPE_BUF) be atomic, but requires no atomicity for writes
// larger than this.
if count <= atomicIOBytes {
return 0, syserror.ErrWouldBlock
}
count = avail
short = true
}
// Ensure that the buffer is big enough.
if newLen, oldCap := p.size+count, int64(len(p.buf)); newLen > oldCap {
// Allocate a new buffer.
newCap := oldCap * 2
if oldCap == 0 {
newCap = 8 // arbitrary; sending individual integers across pipes is relatively common
}
for newLen > newCap {
newCap *= 2
}
if newCap > p.max {
newCap = p.max
}
newBuf := make([]byte, newCap)
// Copy the old buffer's contents to the beginning of the new one.
safemem.CopySeq(
safemem.BlockSeqOf(safemem.BlockFromSafeSlice(newBuf)),
p.bufBlockSeq.DropFirst64(uint64(p.off)).TakeFirst64(uint64(p.size)))
// Switch to the new buffer.
p.buf = newBuf
p.bufBlocks[0] = safemem.BlockFromSafeSlice(newBuf)
p.bufBlocks[1] = p.bufBlocks[0]
p.bufBlockSeq = safemem.BlockSeqFromSlice(p.bufBlocks[:])
p.off = 0
}
// Prepare the view of the space to be written.
woff := p.off + p.size
if woff >= int64(len(p.buf)) {
woff -= int64(len(p.buf))
}
bs := p.bufBlockSeq.DropFirst64(uint64(woff)).TakeFirst64(uint64(count))
// Perform the write.
doneU64, err := f(bs)
done := int64(doneU64)
p.size += done
if done < count || err != nil {
return done, err
}
// If we shortened the write, adjust the returned error appropriately.
if short {
return done, syserror.ErrWouldBlock
}
return done, nil
}
// rOpen signals a new reader of the pipe.
func (p *Pipe) rOpen() {
atomic.AddInt32(&p.readers, 1)
}
// wOpen signals a new writer of the pipe.
func (p *Pipe) wOpen() {
p.mu.Lock()
defer p.mu.Unlock()
p.hadWriter = true
atomic.AddInt32(&p.writers, 1)
}
// rClose signals that a reader has closed their end of the pipe.
func (p *Pipe) rClose() {
newReaders := atomic.AddInt32(&p.readers, -1)
if newReaders < 0 {
panic(fmt.Sprintf("Refcounting bug, pipe has negative readers: %v", newReaders))
}
}
// wClose signals that a writer has closed their end of the pipe.
func (p *Pipe) wClose() {
newWriters := atomic.AddInt32(&p.writers, -1)
if newWriters < 0 {
panic(fmt.Sprintf("Refcounting bug, pipe has negative writers: %v.", newWriters))
}
}
// HasReaders returns whether the pipe has any active readers.
func (p *Pipe) HasReaders() bool {
return atomic.LoadInt32(&p.readers) > 0
}
// HasWriters returns whether the pipe has any active writers.
func (p *Pipe) HasWriters() bool {
return atomic.LoadInt32(&p.writers) > 0
}
// rReadinessLocked calculates the read readiness.
//
// Precondition: mu must be held.
func (p *Pipe) rReadinessLocked() waiter.EventMask {
ready := waiter.EventMask(0)
if p.HasReaders() && p.size != 0 {
ready |= waiter.ReadableEvents
}
if !p.HasWriters() && p.hadWriter {
// POLLHUP must be suppressed until the pipe has had at least one writer
// at some point. Otherwise a reader thread may poll and immediately get
// a POLLHUP before the writer ever opens the pipe, which the reader may
// interpret as the writer opening then closing the pipe.
ready |= waiter.EventHUp
}
return ready
}
// rReadiness returns a mask that states whether the read end of the pipe is
// ready for reading.
func (p *Pipe) rReadiness() waiter.EventMask {
p.mu.Lock()
defer p.mu.Unlock()
return p.rReadinessLocked()
}
// wReadinessLocked calculates the write readiness.
//
// Precondition: mu must be held.
func (p *Pipe) wReadinessLocked() waiter.EventMask {
ready := waiter.EventMask(0)
if p.HasWriters() && p.size < p.max {
ready |= waiter.WritableEvents
}
if !p.HasReaders() {
ready |= waiter.EventErr
}
return ready
}
// wReadiness returns a mask that states whether the write end of the pipe
// is ready for writing.
func (p *Pipe) wReadiness() waiter.EventMask {
p.mu.Lock()
defer p.mu.Unlock()
return p.wReadinessLocked()
}
// rwReadiness returns a mask that states whether a read-write handle to the
// pipe is ready for IO.
func (p *Pipe) rwReadiness() waiter.EventMask {
p.mu.Lock()
defer p.mu.Unlock()
return p.rReadinessLocked() | p.wReadinessLocked()
}
// queued returns the amount of queued data.
func (p *Pipe) queued() int64 {
p.mu.Lock()
defer p.mu.Unlock()
return p.queuedLocked()
}
func (p *Pipe) queuedLocked() int64 {
return p.size
}
// FifoSize implements fs.FifoSizer.FifoSize.
func (p *Pipe) FifoSize(context.Context, *fs.File) (int64, error) {
p.mu.Lock()
defer p.mu.Unlock()
return p.max, nil
}
// SetFifoSize implements fs.FifoSizer.SetFifoSize.
func (p *Pipe) SetFifoSize(size int64) (int64, error) {
if size < 0 {
return 0, linuxerr.EINVAL
}
if size < MinimumPipeSize {
size = MinimumPipeSize // Per spec.
}
if size > MaximumPipeSize {
return 0, linuxerr.EPERM
}
p.mu.Lock()
defer p.mu.Unlock()
if size < p.size {
return 0, linuxerr.EBUSY
}
p.max = size
return size, nil
}
|