1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
import (
"gvisor.googlesource.com/gvisor/pkg/abi/linux"
"gvisor.googlesource.com/gvisor/pkg/bits"
"gvisor.googlesource.com/gvisor/pkg/sentry/arch"
)
const (
// stdSignalCap is the maximum number of instances of a given standard
// signal that may be pending. ("[If] multiple instances of a standard
// signal are delivered while that signal is currently blocked, then only
// one instance is queued.") - signal(7)
stdSignalCap = 1
// rtSignalCap is the maximum number of instances of a given realtime
// signal that may be pending.
//
// TODO: In Linux, the minimum signal queue size is
// RLIMIT_SIGPENDING, which is by default max_threads/2.
rtSignalCap = 32
)
// pendingSignals holds a collection of pending signals. The zero value of
// pendingSignals is a valid empty collection. pendingSignals is thread-unsafe;
// users must provide synchronization.
//
// +stateify savable
type pendingSignals struct {
// signals contains all pending signals.
//
// Note that signals is zero-indexed, but signal 1 is the first valid
// signal, so signals[0] contains signals with signo 1 etc. This offset is
// usually handled by using Signal.index().
signals [linux.SignalMaximum]pendingSignalQueue `state:".([]savedPendingSignal)"`
// Bit i of pendingSet is set iff there is at least one signal with signo
// i+1 pending.
pendingSet linux.SignalSet `state:"manual"`
}
// pendingSignalQueue holds a pendingSignalList for a single signal number.
//
// +stateify savable
type pendingSignalQueue struct {
pendingSignalList
length int
}
// +stateify savable
type pendingSignal struct {
// pendingSignalEntry links into a pendingSignalList.
pendingSignalEntry
*arch.SignalInfo
// If timer is not nil, it is the IntervalTimer which sent this signal.
timer *IntervalTimer
}
// enqueue enqueues the given signal. enqueue returns true on success and false
// on failure (if the given signal's queue is full).
//
// Preconditions: info represents a valid signal.
func (p *pendingSignals) enqueue(info *arch.SignalInfo, timer *IntervalTimer) bool {
sig := linux.Signal(info.Signo)
q := &p.signals[sig.Index()]
if sig.IsStandard() {
if q.length >= stdSignalCap {
return false
}
} else if q.length >= rtSignalCap {
return false
}
q.pendingSignalList.PushBack(&pendingSignal{SignalInfo: info, timer: timer})
q.length++
p.pendingSet |= linux.SignalSetOf(sig)
return true
}
// dequeue dequeues and returns any pending signal not masked by mask. If no
// unmasked signals are pending, dequeue returns nil.
func (p *pendingSignals) dequeue(mask linux.SignalSet) *arch.SignalInfo {
// "Real-time signals are delivered in a guaranteed order. Multiple
// real-time signals of the same type are delivered in the order they were
// sent. If different real-time signals are sent to a process, they are
// delivered starting with the lowest-numbered signal. (I.e., low-numbered
// signals have highest priority.) By contrast, if multiple standard
// signals are pending for a process, the order in which they are delivered
// is unspecified. If both standard and real-time signals are pending for a
// process, POSIX leaves it unspecified which is delivered first. Linux,
// like many other implementations, gives priority to standard signals in
// this case." - signal(7)
lowestPendingUnblockedBit := bits.TrailingZeros64(uint64(p.pendingSet &^ mask))
if lowestPendingUnblockedBit >= linux.SignalMaximum {
return nil
}
return p.dequeueSpecific(linux.Signal(lowestPendingUnblockedBit + 1))
}
func (p *pendingSignals) dequeueSpecific(sig linux.Signal) *arch.SignalInfo {
q := &p.signals[sig.Index()]
ps := q.pendingSignalList.Front()
if ps == nil {
return nil
}
q.pendingSignalList.Remove(ps)
q.length--
if q.length == 0 {
p.pendingSet &^= linux.SignalSetOf(sig)
}
if ps.timer != nil {
ps.timer.updateDequeuedSignalLocked(ps.SignalInfo)
}
return ps.SignalInfo
}
// discardSpecific causes all pending signals with number sig to be discarded.
func (p *pendingSignals) discardSpecific(sig linux.Signal) {
q := &p.signals[sig.Index()]
for ps := q.pendingSignalList.Front(); ps != nil; ps = ps.Next() {
if ps.timer != nil {
ps.timer.signalRejectedLocked()
}
}
q.pendingSignalList.Reset()
q.length = 0
p.pendingSet &^= linux.SignalSetOf(sig)
}
|