summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/kernel/kernel.go
blob: 85d73ace283f528f950cce2bdf2b51c6f8d3e5cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Package kernel provides an emulation of the Linux kernel.
//
// See README.md for a detailed overview.
//
// Lock order (outermost locks must be taken first):
//
// Kernel.extMu
//   ThreadGroup.timerMu
//     ktime.Timer.mu (for kernelCPUClockTicker and IntervalTimer)
//       TaskSet.mu
//         SignalHandlers.mu
//           Task.mu
//
// Locking SignalHandlers.mu in multiple SignalHandlers requires locking
// TaskSet.mu exclusively first. Locking Task.mu in multiple Tasks at the same
// time requires locking all of their signal mutexes first.
package kernel

import (
	"errors"
	"fmt"
	"io"
	"path/filepath"
	"sync"
	"sync/atomic"
	"time"

	"gvisor.googlesource.com/gvisor/pkg/abi/linux"
	"gvisor.googlesource.com/gvisor/pkg/cpuid"
	"gvisor.googlesource.com/gvisor/pkg/eventchannel"
	"gvisor.googlesource.com/gvisor/pkg/log"
	"gvisor.googlesource.com/gvisor/pkg/refs"
	"gvisor.googlesource.com/gvisor/pkg/sentry/arch"
	"gvisor.googlesource.com/gvisor/pkg/sentry/context"
	"gvisor.googlesource.com/gvisor/pkg/sentry/fs"
	"gvisor.googlesource.com/gvisor/pkg/sentry/fs/timerfd"
	"gvisor.googlesource.com/gvisor/pkg/sentry/hostcpu"
	"gvisor.googlesource.com/gvisor/pkg/sentry/inet"
	"gvisor.googlesource.com/gvisor/pkg/sentry/kernel/auth"
	"gvisor.googlesource.com/gvisor/pkg/sentry/kernel/epoll"
	"gvisor.googlesource.com/gvisor/pkg/sentry/kernel/futex"
	"gvisor.googlesource.com/gvisor/pkg/sentry/kernel/sched"
	ktime "gvisor.googlesource.com/gvisor/pkg/sentry/kernel/time"
	"gvisor.googlesource.com/gvisor/pkg/sentry/limits"
	"gvisor.googlesource.com/gvisor/pkg/sentry/loader"
	"gvisor.googlesource.com/gvisor/pkg/sentry/mm"
	"gvisor.googlesource.com/gvisor/pkg/sentry/pgalloc"
	"gvisor.googlesource.com/gvisor/pkg/sentry/platform"
	"gvisor.googlesource.com/gvisor/pkg/sentry/socket/netlink/port"
	sentrytime "gvisor.googlesource.com/gvisor/pkg/sentry/time"
	"gvisor.googlesource.com/gvisor/pkg/sentry/unimpl"
	uspb "gvisor.googlesource.com/gvisor/pkg/sentry/unimpl/unimplemented_syscall_go_proto"
	"gvisor.googlesource.com/gvisor/pkg/sentry/uniqueid"
	"gvisor.googlesource.com/gvisor/pkg/state"
	"gvisor.googlesource.com/gvisor/pkg/tcpip"
)

// Kernel represents an emulated Linux kernel. It must be initialized by calling
// Init() or LoadFrom().
//
// +stateify savable
type Kernel struct {
	// extMu serializes external changes to the Kernel with calls to
	// Kernel.SaveTo. (Kernel.SaveTo requires that the state of the Kernel
	// remains frozen for the duration of the call; it requires that the Kernel
	// is paused as a precondition, which ensures that none of the tasks
	// running within the Kernel can affect its state, but extMu is required to
	// ensure that concurrent users of the Kernel *outside* the Kernel's
	// control cannot affect its state by calling e.g.
	// Kernel.SendExternalSignal.)
	extMu sync.Mutex `state:"nosave"`

	// started is true if Start has been called. Unless otherwise specified,
	// all Kernel fields become immutable once started becomes true.
	started bool `state:"nosave"`

	// All of the following fields are immutable unless otherwise specified.

	// Platform is the platform that is used to execute tasks in the created
	// Kernel. See comment on pgalloc.MemoryFileProvider for why Platform is
	// embedded anonymously (the same issue applies).
	platform.Platform `state:"nosave"`

	// mf provides application memory.
	mf *pgalloc.MemoryFile `state:"nosave"`

	// See InitKernelArgs for the meaning of these fields.
	featureSet                  *cpuid.FeatureSet
	timekeeper                  *Timekeeper
	tasks                       *TaskSet
	rootUserNamespace           *auth.UserNamespace
	networkStack                inet.Stack `state:"nosave"`
	applicationCores            uint
	useHostCores                bool
	extraAuxv                   []arch.AuxEntry
	vdso                        *loader.VDSO
	rootUTSNamespace            *UTSNamespace
	rootIPCNamespace            *IPCNamespace
	rootAbstractSocketNamespace *AbstractSocketNamespace

	// mounts holds the state of the virtual filesystem. mounts is initially
	// nil, and must be set by calling Kernel.SetRootMountNamespace before
	// Kernel.CreateProcess can succeed.
	mounts *fs.MountNamespace

	// futexes is the "root" futex.Manager, from which all others are forked.
	// This is necessary to ensure that shared futexes are coherent across all
	// tasks, including those created by CreateProcess.
	futexes *futex.Manager

	// globalInit is the thread group whose leader has ID 1 in the root PID
	// namespace. globalInit is stored separately so that it is accessible even
	// after all tasks in the thread group have exited, such that ID 1 is no
	// longer mapped.
	//
	// globalInit is mutable until it is assigned by the first successful call
	// to CreateProcess, and is protected by extMu.
	globalInit *ThreadGroup

	// realtimeClock is a ktime.Clock based on timekeeper's Realtime.
	realtimeClock *timekeeperClock

	// monotonicClock is a ktime.Clock based on timekeeper's Monotonic.
	monotonicClock *timekeeperClock

	// syslog is the kernel log.
	syslog syslog

	// cpuClock is incremented every linux.ClockTick. cpuClock is used to
	// measure task CPU usage, since sampling monotonicClock twice on every
	// syscall turns out to be unreasonably expensive. This is similar to how
	// Linux does task CPU accounting on x86 (CONFIG_IRQ_TIME_ACCOUNTING),
	// although Linux also uses scheduler timing information to improve
	// resolution (kernel/sched/cputime.c:cputime_adjust()), which we can't do
	// since "preeemptive" scheduling is managed by the Go runtime, which
	// doesn't provide this information.
	//
	// cpuClock is mutable, and is accessed using atomic memory operations.
	cpuClock uint64

	// cpuClockTicker increments cpuClock.
	cpuClockTicker *ktime.Timer `state:"nosave"`

	// fdMapUids is an ever-increasing counter for generating FDMap uids.
	//
	// fdMapUids is mutable, and is accessed using atomic memory operations.
	fdMapUids uint64

	// uniqueID is used to generate unique identifiers.
	//
	// uniqueID is mutable, and is accessed using atomic memory operations.
	uniqueID uint64

	// nextInotifyCookie is a monotonically increasing counter used for
	// generating unique inotify event cookies.
	//
	// nextInotifyCookie is mutable, and is accessed using atomic memory
	// operations.
	nextInotifyCookie uint32

	// netlinkPorts manages allocation of netlink socket port IDs.
	netlinkPorts *port.Manager

	// saveErr is the error causing the sandbox to exit during save, if
	// any. It is protected by extMu.
	saveErr error `state:"nosave"`

	// danglingEndpoints is used to save / restore tcpip.DanglingEndpoints.
	danglingEndpoints struct{} `state:".([]tcpip.Endpoint)"`

	// socketTable is used to track all sockets on the system. Protected by
	// extMu.
	socketTable map[int]map[*refs.WeakRef]struct{}

	// deviceRegistry is used to save/restore device.SimpleDevices.
	deviceRegistry struct{} `state:".(*device.Registry)"`

	// DirentCacheLimiter controls the number of total dirent entries can be in
	// caches. Not all caches use it, only the caches that use host resources use
	// the limiter. It may be nil if disabled.
	DirentCacheLimiter *fs.DirentCacheLimiter
}

// InitKernelArgs holds arguments to Init.
type InitKernelArgs struct {
	// FeatureSet is the emulated CPU feature set.
	FeatureSet *cpuid.FeatureSet

	// Timekeeper manages time for all tasks in the system.
	Timekeeper *Timekeeper

	// RootUserNamespace is the root user namespace.
	RootUserNamespace *auth.UserNamespace

	// NetworkStack is the TCP/IP network stack. NetworkStack may be nil.
	NetworkStack inet.Stack

	// ApplicationCores is the number of logical CPUs visible to sandboxed
	// applications. The set of logical CPU IDs is [0, ApplicationCores); thus
	// ApplicationCores is analogous to Linux's nr_cpu_ids, the index of the
	// most significant bit in cpu_possible_mask + 1.
	ApplicationCores uint

	// If UseHostCores is true, Task.CPU() returns the task goroutine's CPU
	// instead of a virtualized CPU number, and Task.CopyToCPUMask() is a
	// no-op. If ApplicationCores is less than hostcpu.MaxPossibleCPU(), it
	// will be overridden.
	UseHostCores bool

	// ExtraAuxv contains additional auxiliary vector entries that are added to
	// each process by the ELF loader.
	ExtraAuxv []arch.AuxEntry

	// Vdso holds the VDSO and its parameter page.
	Vdso *loader.VDSO

	// RootUTSNamespace is the root UTS namespace.
	RootUTSNamespace *UTSNamespace

	// RootIPCNamespace is the root IPC namespace.
	RootIPCNamespace *IPCNamespace

	// RootAbstractSocketNamespace is the root Abstract Socket namespace.
	RootAbstractSocketNamespace *AbstractSocketNamespace
}

// Init initialize the Kernel with no tasks.
//
// Callers must manually set Kernel.Platform and call Kernel.SetMemoryFile
// before calling Init.
func (k *Kernel) Init(args InitKernelArgs) error {
	if args.FeatureSet == nil {
		return fmt.Errorf("FeatureSet is nil")
	}
	if args.Timekeeper == nil {
		return fmt.Errorf("Timekeeper is nil")
	}
	if args.RootUserNamespace == nil {
		return fmt.Errorf("RootUserNamespace is nil")
	}
	if args.ApplicationCores == 0 {
		return fmt.Errorf("ApplicationCores is 0")
	}

	k.featureSet = args.FeatureSet
	k.timekeeper = args.Timekeeper
	k.tasks = newTaskSet()
	k.rootUserNamespace = args.RootUserNamespace
	k.rootUTSNamespace = args.RootUTSNamespace
	k.rootIPCNamespace = args.RootIPCNamespace
	k.rootAbstractSocketNamespace = args.RootAbstractSocketNamespace
	k.networkStack = args.NetworkStack
	k.applicationCores = args.ApplicationCores
	if args.UseHostCores {
		k.useHostCores = true
		maxCPU, err := hostcpu.MaxPossibleCPU()
		if err != nil {
			return fmt.Errorf("Failed to get maximum CPU number: %v", err)
		}
		minAppCores := uint(maxCPU) + 1
		if k.applicationCores < minAppCores {
			log.Infof("UseHostCores enabled: increasing ApplicationCores from %d to %d", k.applicationCores, minAppCores)
			k.applicationCores = minAppCores
		}
	}
	k.extraAuxv = args.ExtraAuxv
	k.vdso = args.Vdso
	k.realtimeClock = &timekeeperClock{tk: args.Timekeeper, c: sentrytime.Realtime}
	k.monotonicClock = &timekeeperClock{tk: args.Timekeeper, c: sentrytime.Monotonic}
	k.futexes = futex.NewManager()
	k.netlinkPorts = port.New()
	k.socketTable = make(map[int]map[*refs.WeakRef]struct{})

	return nil
}

// SaveTo saves the state of k to w.
//
// Preconditions: The kernel must be paused throughout the call to SaveTo.
func (k *Kernel) SaveTo(w io.Writer) error {
	saveStart := time.Now()
	ctx := k.SupervisorContext()

	// Do not allow other Kernel methods to affect it while it's being saved.
	k.extMu.Lock()
	defer k.extMu.Unlock()

	// Stop time.
	k.pauseTimeLocked()
	defer k.resumeTimeLocked()

	// Evict all evictable MemoryFile allocations.
	k.mf.StartEvictions()
	k.mf.WaitForEvictions()

	// Flush write operations on open files so data reaches backing storage.
	// This must come after MemoryFile eviction since eviction may cause file
	// writes.
	if err := k.tasks.flushWritesToFiles(ctx); err != nil {
		return err
	}

	// Remove all epoll waiter objects from underlying wait queues.
	// NOTE: for programs to resume execution in future snapshot scenarios,
	// we will need to re-establish these waiter objects after saving.
	k.tasks.unregisterEpollWaiters()

	// Clear the dirent cache before saving because Dirents must be Loaded in a
	// particular order (parents before children), and Loading dirents from a cache
	// breaks that order.
	if err := k.flushMountSourceRefs(); err != nil {
		return err
	}

	// Ensure that all pending asynchronous work is complete:
	//   - inode and mount release
	//   - asynchronuous IO
	fs.AsyncBarrier()

	// Once all fs work has completed (flushed references have all been released),
	// reset mount mappings. This allows individual mounts to save how inodes map
	// to filesystem resources. Without this, fs.Inodes cannot be restored.
	fs.SaveInodeMappings()

	// Discard unsavable mappings, such as those for host file descriptors.
	// This must be done after waiting for "asynchronous fs work", which
	// includes async I/O that may touch application memory.
	if err := k.invalidateUnsavableMappings(ctx); err != nil {
		return fmt.Errorf("failed to invalidate unsavable mappings: %v", err)
	}

	// Save the CPUID FeatureSet before the rest of the kernel so we can
	// verify its compatibility on restore before attempting to restore the
	// entire kernel, which may fail on an incompatible machine.
	//
	// N.B. This will also be saved along with the full kernel save below.
	cpuidStart := time.Now()
	if err := state.Save(w, k.FeatureSet(), nil); err != nil {
		return err
	}
	log.Infof("CPUID save took [%s].", time.Since(cpuidStart))

	// Save the kernel state.
	kernelStart := time.Now()
	var stats state.Stats
	if err := state.Save(w, k, &stats); err != nil {
		return err
	}
	log.Infof("Kernel save stats: %s", &stats)
	log.Infof("Kernel save took [%s].", time.Since(kernelStart))

	// Save the memory file's state.
	memoryStart := time.Now()
	if err := k.mf.SaveTo(w); err != nil {
		return err
	}
	log.Infof("Memory save took [%s].", time.Since(memoryStart))

	log.Infof("Overall save took [%s].", time.Since(saveStart))

	return nil
}

// flushMountSourceRefs flushes the MountSources for all mounted filesystems
// and open FDs.
func (k *Kernel) flushMountSourceRefs() error {
	// Flush all mount sources for currently mounted filesystems.
	k.mounts.FlushMountSourceRefs()

	// There may be some open FDs whose filesystems have been unmounted. We
	// must flush those as well.
	return k.tasks.forEachFDPaused(func(desc descriptor) error {
		desc.file.Dirent.Inode.MountSource.FlushDirentRefs()
		return nil
	})
}

// forEachFDPaused applies the given function to each open file descriptor in each
// task.
//
// Precondition: Must be called with the kernel paused.
func (ts *TaskSet) forEachFDPaused(f func(descriptor) error) error {
	ts.mu.RLock()
	defer ts.mu.RUnlock()
	for t := range ts.Root.tids {
		// We can skip locking Task.mu here since the kernel is paused.
		if t.fds == nil {
			continue
		}
		for _, desc := range t.fds.files {
			if err := f(desc); err != nil {
				return err
			}
		}
	}
	return nil
}

func (ts *TaskSet) flushWritesToFiles(ctx context.Context) error {
	return ts.forEachFDPaused(func(desc descriptor) error {
		if flags := desc.file.Flags(); !flags.Write {
			return nil
		}
		if sattr := desc.file.Dirent.Inode.StableAttr; !fs.IsFile(sattr) && !fs.IsDir(sattr) {
			return nil
		}
		// Here we need all metadata synced.
		syncErr := desc.file.Fsync(ctx, 0, fs.FileMaxOffset, fs.SyncAll)
		if err := fs.SaveFileFsyncError(syncErr); err != nil {
			name, _ := desc.file.Dirent.FullName(nil /* root */)
			// Wrap this error in ErrSaveRejection
			// so that it will trigger a save
			// error, rather than a panic. This
			// also allows us to distinguish Fsync
			// errors from state file errors in
			// state.Save.
			return fs.ErrSaveRejection{
				Err: fmt.Errorf("%q was not sufficiently synced: %v", name, err),
			}
		}
		return nil
	})
}

// Preconditions: The kernel must be paused.
func (k *Kernel) invalidateUnsavableMappings(ctx context.Context) error {
	invalidated := make(map[*mm.MemoryManager]struct{})
	k.tasks.mu.RLock()
	defer k.tasks.mu.RUnlock()
	for t := range k.tasks.Root.tids {
		// We can skip locking Task.mu here since the kernel is paused.
		if mm := t.tc.MemoryManager; mm != nil {
			if _, ok := invalidated[mm]; !ok {
				if err := mm.InvalidateUnsavable(ctx); err != nil {
					return err
				}
				invalidated[mm] = struct{}{}
			}
		}
		// I really wish we just had a sync.Map of all MMs...
		if r, ok := t.runState.(*runSyscallAfterExecStop); ok {
			if err := r.tc.MemoryManager.InvalidateUnsavable(ctx); err != nil {
				return err
			}
		}
	}
	return nil
}

func (ts *TaskSet) unregisterEpollWaiters() {
	ts.mu.RLock()
	defer ts.mu.RUnlock()
	for t := range ts.Root.tids {
		// We can skip locking Task.mu here since the kernel is paused.
		if fdmap := t.fds; fdmap != nil {
			for _, desc := range fdmap.files {
				if desc.file != nil {
					if e, ok := desc.file.FileOperations.(*epoll.EventPoll); ok {
						e.UnregisterEpollWaiters()
					}
				}
			}
		}
	}
}

// LoadFrom returns a new Kernel loaded from args.
func (k *Kernel) LoadFrom(r io.Reader, net inet.Stack) error {
	loadStart := time.Now()

	k.networkStack = net

	initAppCores := k.applicationCores

	// Load the pre-saved CPUID FeatureSet.
	//
	// N.B. This was also saved along with the full kernel below, so we
	// don't need to explicitly install it in the Kernel.
	cpuidStart := time.Now()
	var features cpuid.FeatureSet
	if err := state.Load(r, &features, nil); err != nil {
		return err
	}
	log.Infof("CPUID load took [%s].", time.Since(cpuidStart))

	// Verify that the FeatureSet is usable on this host. We do this before
	// Kernel load so that the explicit CPUID mismatch error has priority
	// over floating point state restore errors that may occur on load on
	// an incompatible machine.
	if err := features.CheckHostCompatible(); err != nil {
		return err
	}

	// Load the kernel state.
	kernelStart := time.Now()
	var stats state.Stats
	if err := state.Load(r, k, &stats); err != nil {
		return err
	}
	log.Infof("Kernel load stats: %s", &stats)
	log.Infof("Kernel load took [%s].", time.Since(kernelStart))

	// Load the memory file's state.
	memoryStart := time.Now()
	if err := k.mf.LoadFrom(r); err != nil {
		return err
	}
	log.Infof("Memory load took [%s].", time.Since(memoryStart))

	// Ensure that all pending asynchronous work is complete:
	//   - namedpipe opening
	//   - inode file opening
	if err := fs.AsyncErrorBarrier(); err != nil {
		return err
	}

	tcpip.AsyncLoading.Wait()

	log.Infof("Overall load took [%s]", time.Since(loadStart))

	// Applications may size per-cpu structures based on k.applicationCores, so
	// it can't change across save/restore. When we are virtualizing CPU
	// numbers, this isn't a problem. However, when we are exposing host CPU
	// assignments, we can't tolerate an increase in the number of host CPUs,
	// which could result in getcpu(2) returning CPUs that applications expect
	// not to exist.
	if k.useHostCores && initAppCores > k.applicationCores {
		return fmt.Errorf("UseHostCores enabled: can't increase ApplicationCores from %d to %d after restore", k.applicationCores, initAppCores)
	}

	return nil
}

// Destroy releases resources owned by k.
//
// Preconditions: There must be no task goroutines running in k.
func (k *Kernel) Destroy() {
	if k.mounts != nil {
		k.mounts.DecRef()
		k.mounts = nil
	}
}

// UniqueID returns a unique identifier.
func (k *Kernel) UniqueID() uint64 {
	id := atomic.AddUint64(&k.uniqueID, 1)
	if id == 0 {
		panic("unique identifier generator wrapped around")
	}
	return id
}

// CreateProcessArgs holds arguments to kernel.CreateProcess.
type CreateProcessArgs struct {
	// Filename is the filename to load.
	//
	// If this is provided as "", then the file will be guessed via Argv[0].
	Filename string

	// Argvv is a list of arguments.
	Argv []string

	// Envv is a list of environment variables.
	Envv []string

	// WorkingDirectory is the initial working directory.
	//
	// This defaults to the root if empty.
	WorkingDirectory string

	// Credentials is the initial credentials.
	Credentials *auth.Credentials

	// FDMap is the initial set of file descriptors. If CreateProcess succeeds,
	// it takes a reference on FDMap.
	FDMap *FDMap

	// Umask is the initial umask.
	Umask uint

	// Limits is the initial resource limits.
	Limits *limits.LimitSet

	// MaxSymlinkTraversals is the maximum number of symlinks to follow
	// during resolution.
	MaxSymlinkTraversals uint

	// UTSNamespace is the initial UTS namespace.
	UTSNamespace *UTSNamespace

	// IPCNamespace is the initial IPC namespace.
	IPCNamespace *IPCNamespace

	// AbstractSocketNamespace is the initial Abstract Socket namespace.
	AbstractSocketNamespace *AbstractSocketNamespace

	// Root optionally contains the dirent that serves as the root for the
	// process. If nil, the mount namespace's root is used as the process'
	// root.
	//
	// Anyone setting Root must donate a reference (i.e. increment it) to
	// keep it alive until it is decremented by CreateProcess.
	Root *fs.Dirent

	// ContainerID is the container that the process belongs to.
	ContainerID string
}

// NewContext returns a context.Context that represents the task that will be
// created by args.NewContext(k).
func (args *CreateProcessArgs) NewContext(k *Kernel) *createProcessContext {
	return &createProcessContext{
		Logger: log.Log(),
		k:      k,
		args:   args,
	}
}

// createProcessContext is a context.Context that represents the context
// associated with a task that is being created.
type createProcessContext struct {
	context.NoopSleeper
	log.Logger
	k    *Kernel
	args *CreateProcessArgs
}

// Value implements context.Context.Value.
func (ctx *createProcessContext) Value(key interface{}) interface{} {
	switch key {
	case CtxKernel:
		return ctx.k
	case CtxPIDNamespace:
		// "The new task ... is in the root PID namespace." -
		// Kernel.CreateProcess
		return ctx.k.tasks.Root
	case CtxUTSNamespace:
		return ctx.args.UTSNamespace
	case CtxIPCNamespace:
		return ctx.args.IPCNamespace
	case auth.CtxCredentials:
		return ctx.args.Credentials
	case fs.CtxRoot:
		if ctx.args.Root != nil {
			// Take a refernce on the root dirent that will be
			// given to the caller.
			ctx.args.Root.IncRef()
			return ctx.args.Root
		}
		if ctx.k.mounts != nil {
			// MountNamespace.Root() will take a reference on the
			// root dirent for us.
			return ctx.k.mounts.Root()
		}
		return nil
	case fs.CtxDirentCacheLimiter:
		return ctx.k.DirentCacheLimiter
	case ktime.CtxRealtimeClock:
		return ctx.k.RealtimeClock()
	case limits.CtxLimits:
		return ctx.args.Limits
	case pgalloc.CtxMemoryFile:
		return ctx.k.mf
	case pgalloc.CtxMemoryFileProvider:
		return ctx.k
	case platform.CtxPlatform:
		return ctx.k
	case uniqueid.CtxGlobalUniqueID:
		return ctx.k.UniqueID()
	case uniqueid.CtxGlobalUniqueIDProvider:
		return ctx.k
	case uniqueid.CtxInotifyCookie:
		return ctx.k.GenerateInotifyCookie()
	case unimpl.CtxEvents:
		return ctx.k
	default:
		return nil
	}
}

// CreateProcess creates a new task in a new thread group with the given
// options. The new task has no parent and is in the root PID namespace.
//
// If k.Start() has already been called, then the created process must be
// started by calling kernel.StartProcess(tg).
//
// If k.Start() has not yet been called, then the created task will begin
// running when k.Start() is called.
//
// CreateProcess has no analogue in Linux; it is used to create the initial
// application task, as well as processes started by the control server.
func (k *Kernel) CreateProcess(args CreateProcessArgs) (*ThreadGroup, ThreadID, error) {
	k.extMu.Lock()
	defer k.extMu.Unlock()
	log.Infof("EXEC: %v", args.Argv)

	if k.mounts == nil {
		return nil, 0, fmt.Errorf("no kernel MountNamespace")
	}

	tg := k.newThreadGroup(k.tasks.Root, NewSignalHandlers(), linux.SIGCHLD, args.Limits, k.monotonicClock)
	ctx := args.NewContext(k)

	// Grab the root directory.
	root := args.Root
	if root == nil {
		root = fs.RootFromContext(ctx)
		// Is the root STILL nil?
		if root == nil {
			return nil, 0, fmt.Errorf("CreateProcessArgs.Root was not provided, and failed to get root from context")
		}
	}
	defer root.DecRef()
	args.Root = nil

	// Grab the working directory.
	remainingTraversals := uint(args.MaxSymlinkTraversals)
	wd := root // Default.
	if args.WorkingDirectory != "" {
		var err error
		wd, err = k.mounts.FindInode(ctx, root, nil, args.WorkingDirectory, &remainingTraversals)
		if err != nil {
			return nil, 0, fmt.Errorf("failed to find initial working directory %q: %v", args.WorkingDirectory, err)
		}
		defer wd.DecRef()
	}

	if args.Filename == "" {
		// Was anything provided?
		if len(args.Argv) == 0 {
			return nil, 0, fmt.Errorf("no filename or command provided")
		}
		if !filepath.IsAbs(args.Argv[0]) {
			return nil, 0, fmt.Errorf("'%s' is not an absolute path", args.Argv[0])
		}
		args.Filename = args.Argv[0]
	}

	// Create a fresh task context.
	remainingTraversals = uint(args.MaxSymlinkTraversals)
	tc, se := k.LoadTaskImage(ctx, k.mounts, root, wd, &remainingTraversals, args.Filename, args.Argv, args.Envv, k.featureSet)
	if se != nil {
		return nil, 0, errors.New(se.String())
	}

	// Take a reference on the FDMap, which will be transferred to
	// TaskSet.NewTask().
	args.FDMap.IncRef()

	// Create the task.
	config := &TaskConfig{
		Kernel:                  k,
		ThreadGroup:             tg,
		TaskContext:             tc,
		FSContext:               newFSContext(root, wd, args.Umask),
		FDMap:                   args.FDMap,
		Credentials:             args.Credentials,
		AllowedCPUMask:          sched.NewFullCPUSet(k.applicationCores),
		UTSNamespace:            args.UTSNamespace,
		IPCNamespace:            args.IPCNamespace,
		AbstractSocketNamespace: args.AbstractSocketNamespace,
		ContainerID:             args.ContainerID,
	}
	if _, err := k.tasks.NewTask(config); err != nil {
		return nil, 0, err
	}

	// Success.
	tgid := k.tasks.Root.IDOfThreadGroup(tg)
	if k.globalInit == nil {
		k.globalInit = tg
	}
	return tg, tgid, nil
}

// StartProcess starts running a process that was created with CreateProcess.
func (k *Kernel) StartProcess(tg *ThreadGroup) {
	t := tg.Leader()
	tid := k.tasks.Root.IDOfTask(t)
	t.Start(tid)
}

// Start starts execution of all tasks in k.
//
// Preconditions: Start may be called exactly once.
func (k *Kernel) Start() error {
	k.extMu.Lock()
	defer k.extMu.Unlock()

	if k.globalInit == nil {
		return fmt.Errorf("kernel contains no tasks")
	}
	if k.started {
		return fmt.Errorf("kernel already started")
	}

	k.started = true
	k.cpuClockTicker = ktime.NewTimer(k.monotonicClock, newKernelCPUClockTicker(k))
	k.cpuClockTicker.Swap(ktime.Setting{
		Enabled: true,
		Period:  linux.ClockTick,
	})
	// If k was created by LoadKernelFrom, timers were stopped during
	// Kernel.SaveTo and need to be resumed. If k was created by NewKernel,
	// this is a no-op.
	k.resumeTimeLocked()
	// Start task goroutines.
	k.tasks.mu.RLock()
	defer k.tasks.mu.RUnlock()
	for t, tid := range k.tasks.Root.tids {
		t.Start(tid)
	}
	return nil
}

// pauseTimeLocked pauses all Timers and Timekeeper updates.
//
// Preconditions: Any task goroutines running in k must be stopped. k.extMu
// must be locked.
func (k *Kernel) pauseTimeLocked() {
	// k.cpuClockTicker may be nil since Kernel.SaveTo() may be called before
	// Kernel.Start().
	if k.cpuClockTicker != nil {
		k.cpuClockTicker.Pause()
	}

	// By precondition, nothing else can be interacting with PIDNamespace.tids
	// or FDMap.files, so we can iterate them without synchronization. (We
	// can't hold the TaskSet mutex when pausing thread group timers because
	// thread group timers call ThreadGroup.SendSignal, which takes the TaskSet
	// mutex, while holding the Timer mutex.)
	for t := range k.tasks.Root.tids {
		if t == t.tg.leader {
			t.tg.itimerRealTimer.Pause()
			for _, it := range t.tg.timers {
				it.PauseTimer()
			}
		}
		// This means we'll iterate FDMaps shared by multiple tasks repeatedly,
		// but ktime.Timer.Pause is idempotent so this is harmless.
		if fdm := t.fds; fdm != nil {
			for _, desc := range fdm.files {
				if tfd, ok := desc.file.FileOperations.(*timerfd.TimerOperations); ok {
					tfd.PauseTimer()
				}
			}
		}
	}
	k.timekeeper.PauseUpdates()
}

// resumeTimeLocked resumes all Timers and Timekeeper updates. If
// pauseTimeLocked has not been previously called, resumeTimeLocked has no
// effect.
//
// Preconditions: Any task goroutines running in k must be stopped. k.extMu
// must be locked.
func (k *Kernel) resumeTimeLocked() {
	if k.cpuClockTicker != nil {
		k.cpuClockTicker.Resume()
	}

	k.timekeeper.ResumeUpdates()
	for t := range k.tasks.Root.tids {
		if t == t.tg.leader {
			t.tg.itimerRealTimer.Resume()
			for _, it := range t.tg.timers {
				it.ResumeTimer()
			}
		}
		if fdm := t.fds; fdm != nil {
			for _, desc := range fdm.files {
				if tfd, ok := desc.file.FileOperations.(*timerfd.TimerOperations); ok {
					tfd.ResumeTimer()
				}
			}
		}
	}
}

// WaitExited blocks until all tasks in k have exited.
func (k *Kernel) WaitExited() {
	k.tasks.liveGoroutines.Wait()
}

// Kill requests that all tasks in k immediately exit as if group exiting with
// status es. Kill does not wait for tasks to exit.
func (k *Kernel) Kill(es ExitStatus) {
	k.extMu.Lock()
	defer k.extMu.Unlock()
	k.tasks.Kill(es)
}

// Pause requests that all tasks in k temporarily stop executing, and blocks
// until all tasks in k have stopped. Multiple calls to Pause nest and require
// an equal number of calls to Unpause to resume execution.
func (k *Kernel) Pause() {
	k.extMu.Lock()
	k.tasks.BeginExternalStop()
	k.extMu.Unlock()
	k.tasks.runningGoroutines.Wait()
}

// Unpause ends the effect of a previous call to Pause. If Unpause is called
// without a matching preceding call to Pause, Unpause may panic.
func (k *Kernel) Unpause() {
	k.extMu.Lock()
	defer k.extMu.Unlock()
	k.tasks.EndExternalStop()
}

// SendExternalSignal injects a signal into the kernel.
//
// context is used only for debugging to describe how the signal was received.
//
// Preconditions: Kernel must have an init process.
func (k *Kernel) SendExternalSignal(info *arch.SignalInfo, context string) {
	k.extMu.Lock()
	defer k.extMu.Unlock()
	k.sendExternalSignal(info, context)
}

// SendContainerSignal sends the given signal to all processes inside the
// namespace that match the given container ID.
func (k *Kernel) SendContainerSignal(cid string, info *arch.SignalInfo) error {
	k.extMu.Lock()
	defer k.extMu.Unlock()
	k.tasks.mu.RLock()
	defer k.tasks.mu.RUnlock()

	var lastErr error
	for tg := range k.tasks.Root.tgids {
		if tg.leader.ContainerID() == cid {
			tg.signalHandlers.mu.Lock()
			infoCopy := *info
			if err := tg.leader.sendSignalLocked(&infoCopy, true /*group*/); err != nil {
				lastErr = err
			}
			tg.signalHandlers.mu.Unlock()
		}
	}
	return lastErr
}

// FeatureSet returns the FeatureSet.
func (k *Kernel) FeatureSet() *cpuid.FeatureSet {
	return k.featureSet
}

// Timekeeper returns the Timekeeper.
func (k *Kernel) Timekeeper() *Timekeeper {
	return k.timekeeper
}

// TaskSet returns the TaskSet.
func (k *Kernel) TaskSet() *TaskSet {
	return k.tasks
}

// RootUserNamespace returns the root UserNamespace.
func (k *Kernel) RootUserNamespace() *auth.UserNamespace {
	return k.rootUserNamespace
}

// RootUTSNamespace returns the root UTSNamespace.
func (k *Kernel) RootUTSNamespace() *UTSNamespace {
	return k.rootUTSNamespace
}

// RootIPCNamespace returns the root IPCNamespace.
func (k *Kernel) RootIPCNamespace() *IPCNamespace {
	return k.rootIPCNamespace
}

// RootAbstractSocketNamespace returns the root AbstractSocketNamespace.
func (k *Kernel) RootAbstractSocketNamespace() *AbstractSocketNamespace {
	return k.rootAbstractSocketNamespace
}

// RootMountNamespace returns the MountNamespace.
func (k *Kernel) RootMountNamespace() *fs.MountNamespace {
	k.extMu.Lock()
	defer k.extMu.Unlock()
	return k.mounts
}

// SetRootMountNamespace sets the MountNamespace.
func (k *Kernel) SetRootMountNamespace(mounts *fs.MountNamespace) {
	k.extMu.Lock()
	defer k.extMu.Unlock()
	k.mounts = mounts
}

// NetworkStack returns the network stack. NetworkStack may return nil if no
// network stack is available.
func (k *Kernel) NetworkStack() inet.Stack {
	return k.networkStack
}

// GlobalInit returns the thread group with ID 1 in the root PID namespace, or
// nil if no such thread group exists. GlobalInit may return a thread group
// containing no tasks if the thread group has already exited.
func (k *Kernel) GlobalInit() *ThreadGroup {
	k.extMu.Lock()
	defer k.extMu.Unlock()
	return k.globalInit
}

// ApplicationCores returns the number of CPUs visible to sandboxed
// applications.
func (k *Kernel) ApplicationCores() uint {
	return k.applicationCores
}

// RealtimeClock returns the application CLOCK_REALTIME clock.
func (k *Kernel) RealtimeClock() ktime.Clock {
	return k.realtimeClock
}

// MonotonicClock returns the application CLOCK_MONOTONIC clock.
func (k *Kernel) MonotonicClock() ktime.Clock {
	return k.monotonicClock
}

// CPUClockNow returns the current value of k.cpuClock.
func (k *Kernel) CPUClockNow() uint64 {
	return atomic.LoadUint64(&k.cpuClock)
}

// Syslog returns the syslog.
func (k *Kernel) Syslog() *syslog {
	return &k.syslog
}

// GenerateInotifyCookie generates a unique inotify event cookie.
//
// Returned values may overlap with previously returned values if the value
// space is exhausted. 0 is not a valid cookie value, all other values
// representable in a uint32 are allowed.
func (k *Kernel) GenerateInotifyCookie() uint32 {
	id := atomic.AddUint32(&k.nextInotifyCookie, 1)
	// Wrap-around is explicitly allowed for inotify event cookies.
	if id == 0 {
		id = atomic.AddUint32(&k.nextInotifyCookie, 1)
	}
	return id
}

// NetlinkPorts returns the netlink port manager.
func (k *Kernel) NetlinkPorts() *port.Manager {
	return k.netlinkPorts
}

// SaveError returns the sandbox error that caused the kernel to exit during
// save.
func (k *Kernel) SaveError() error {
	k.extMu.Lock()
	defer k.extMu.Unlock()
	return k.saveErr
}

// SetSaveError sets the sandbox error that caused the kernel to exit during
// save, if one is not already set.
func (k *Kernel) SetSaveError(err error) {
	k.extMu.Lock()
	defer k.extMu.Unlock()
	if k.saveErr == nil {
		k.saveErr = err
	}
}

var _ tcpip.Clock = (*Kernel)(nil)

// NowNanoseconds implements tcpip.Clock.NowNanoseconds.
func (k *Kernel) NowNanoseconds() int64 {
	now, err := k.timekeeper.GetTime(sentrytime.Realtime)
	if err != nil {
		panic("Kernel.NowNanoseconds: " + err.Error())
	}
	return now
}

// NowMonotonic implements tcpip.Clock.NowMonotonic.
func (k *Kernel) NowMonotonic() int64 {
	now, err := k.timekeeper.GetTime(sentrytime.Monotonic)
	if err != nil {
		panic("Kernel.NowMonotonic: " + err.Error())
	}
	return now
}

// SetMemoryFile sets Kernel.mf. SetMemoryFile must be called before Init or
// LoadFrom.
func (k *Kernel) SetMemoryFile(mf *pgalloc.MemoryFile) {
	k.mf = mf
}

// MemoryFile implements pgalloc.MemoryFileProvider.MemoryFile.
func (k *Kernel) MemoryFile() *pgalloc.MemoryFile {
	return k.mf
}

// SupervisorContext returns a Context with maximum privileges in k. It should
// only be used by goroutines outside the control of the emulated kernel
// defined by e.
//
// Callers are responsible for ensuring that the returned Context is not used
// concurrently with changes to the Kernel.
func (k *Kernel) SupervisorContext() context.Context {
	return supervisorContext{
		Logger: log.Log(),
		k:      k,
	}
}

// EmitUnimplementedEvent emits an UnimplementedSyscall event via the event
// channel.
func (k *Kernel) EmitUnimplementedEvent(ctx context.Context) {
	t := TaskFromContext(ctx)
	eventchannel.Emit(&uspb.UnimplementedSyscall{
		Tid:       int32(t.ThreadID()),
		Registers: t.Arch().StateData().Proto(),
	})
}

// socketEntry represents a socket recorded in Kernel.socketTable. It implements
// refs.WeakRefUser for sockets stored in the socket table.
//
// +stateify savable
type socketEntry struct {
	k      *Kernel
	sock   *refs.WeakRef
	family int
}

// WeakRefGone implements refs.WeakRefUser.WeakRefGone.
func (s *socketEntry) WeakRefGone() {
	s.k.extMu.Lock()
	// k.socketTable is guaranteed to point to a valid socket table for s.family
	// at this point, since we made sure of the fact when we created this
	// socketEntry, and we never delete socket tables.
	delete(s.k.socketTable[s.family], s.sock)
	s.k.extMu.Unlock()
}

// RecordSocket adds a socket to the system-wide socket table for tracking.
//
// Precondition: Caller must hold a reference to sock.
func (k *Kernel) RecordSocket(sock *fs.File, family int) {
	k.extMu.Lock()
	table, ok := k.socketTable[family]
	if !ok {
		table = make(map[*refs.WeakRef]struct{})
		k.socketTable[family] = table
	}
	se := socketEntry{k: k, family: family}
	se.sock = refs.NewWeakRef(sock, &se)
	table[se.sock] = struct{}{}
	k.extMu.Unlock()
}

// ListSockets returns a snapshot of all sockets of a given family.
func (k *Kernel) ListSockets(family int) []*refs.WeakRef {
	k.extMu.Lock()
	socks := []*refs.WeakRef{}
	if table, ok := k.socketTable[family]; ok {
		socks = make([]*refs.WeakRef, 0, len(table))
		for s := range table {
			socks = append(socks, s)
		}
	}
	k.extMu.Unlock()
	return socks
}

type supervisorContext struct {
	context.NoopSleeper
	log.Logger
	k *Kernel
}

// Value implements context.Context.
func (ctx supervisorContext) Value(key interface{}) interface{} {
	switch key {
	case CtxCanTrace:
		// The supervisor context can trace anything. (None of
		// supervisorContext's users are expected to invoke ptrace, but ptrace
		// permissions are required for certain file accesses.)
		return func(*Task, bool) bool { return true }
	case CtxKernel:
		return ctx.k
	case CtxPIDNamespace:
		return ctx.k.tasks.Root
	case CtxUTSNamespace:
		return ctx.k.rootUTSNamespace
	case CtxIPCNamespace:
		return ctx.k.rootIPCNamespace
	case auth.CtxCredentials:
		// The supervisor context is global root.
		return auth.NewRootCredentials(ctx.k.rootUserNamespace)
	case fs.CtxRoot:
		return ctx.k.mounts.Root()
	case fs.CtxDirentCacheLimiter:
		return ctx.k.DirentCacheLimiter
	case ktime.CtxRealtimeClock:
		return ctx.k.RealtimeClock()
	case limits.CtxLimits:
		// No limits apply.
		return limits.NewLimitSet()
	case pgalloc.CtxMemoryFile:
		return ctx.k.mf
	case pgalloc.CtxMemoryFileProvider:
		return ctx.k
	case platform.CtxPlatform:
		return ctx.k
	case uniqueid.CtxGlobalUniqueID:
		return ctx.k.UniqueID()
	case uniqueid.CtxGlobalUniqueIDProvider:
		return ctx.k
	case uniqueid.CtxInotifyCookie:
		return ctx.k.GenerateInotifyCookie()
	case unimpl.CtxEvents:
		return ctx.k
	default:
		return nil
	}
}