summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/kernel/kernel.go
blob: f913d25db985ae6b8b511d7d1b9708a3b1092412 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Package kernel provides an emulation of the Linux kernel.
//
// See README.md for a detailed overview.
//
// Lock order (outermost locks must be taken first):
//
// Kernel.extMu
//   ThreadGroup.timerMu
//     ktime.Timer.mu (for kernelCPUClockTicker and IntervalTimer)
//       TaskSet.mu
//         SignalHandlers.mu
//           Task.mu
//       runningTasksMu
//
// Locking SignalHandlers.mu in multiple SignalHandlers requires locking
// TaskSet.mu exclusively first. Locking Task.mu in multiple Tasks at the same
// time requires locking all of their signal mutexes first.
package kernel

import (
	"errors"
	"fmt"
	"path/filepath"
	"sync/atomic"
	"time"

	"gvisor.dev/gvisor/pkg/abi/linux"
	"gvisor.dev/gvisor/pkg/cleanup"
	"gvisor.dev/gvisor/pkg/context"
	"gvisor.dev/gvisor/pkg/cpuid"
	"gvisor.dev/gvisor/pkg/eventchannel"
	"gvisor.dev/gvisor/pkg/fspath"
	"gvisor.dev/gvisor/pkg/log"
	"gvisor.dev/gvisor/pkg/refs"
	"gvisor.dev/gvisor/pkg/sentry/arch"
	"gvisor.dev/gvisor/pkg/sentry/fs"
	oldtimerfd "gvisor.dev/gvisor/pkg/sentry/fs/timerfd"
	"gvisor.dev/gvisor/pkg/sentry/fsbridge"
	"gvisor.dev/gvisor/pkg/sentry/fsimpl/pipefs"
	"gvisor.dev/gvisor/pkg/sentry/fsimpl/sockfs"
	"gvisor.dev/gvisor/pkg/sentry/fsimpl/timerfd"
	"gvisor.dev/gvisor/pkg/sentry/fsimpl/tmpfs"
	"gvisor.dev/gvisor/pkg/sentry/hostcpu"
	"gvisor.dev/gvisor/pkg/sentry/inet"
	"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
	"gvisor.dev/gvisor/pkg/sentry/kernel/epoll"
	"gvisor.dev/gvisor/pkg/sentry/kernel/futex"
	"gvisor.dev/gvisor/pkg/sentry/kernel/sched"
	ktime "gvisor.dev/gvisor/pkg/sentry/kernel/time"
	"gvisor.dev/gvisor/pkg/sentry/limits"
	"gvisor.dev/gvisor/pkg/sentry/loader"
	"gvisor.dev/gvisor/pkg/sentry/mm"
	"gvisor.dev/gvisor/pkg/sentry/pgalloc"
	"gvisor.dev/gvisor/pkg/sentry/platform"
	"gvisor.dev/gvisor/pkg/sentry/socket/netlink/port"
	sentrytime "gvisor.dev/gvisor/pkg/sentry/time"
	"gvisor.dev/gvisor/pkg/sentry/unimpl"
	uspb "gvisor.dev/gvisor/pkg/sentry/unimpl/unimplemented_syscall_go_proto"
	"gvisor.dev/gvisor/pkg/sentry/uniqueid"
	"gvisor.dev/gvisor/pkg/sentry/vfs"
	"gvisor.dev/gvisor/pkg/state"
	"gvisor.dev/gvisor/pkg/state/wire"
	"gvisor.dev/gvisor/pkg/sync"
	"gvisor.dev/gvisor/pkg/tcpip"
)

// VFS2Enabled is set to true when VFS2 is enabled. Added as a global to allow
// easy access everywhere.
//
// TODO(gvisor.dev/issue/1624): Remove when VFS1 is no longer used.
var VFS2Enabled = false

// LISAFSEnabled is set to true when lisafs protocol is enabled. Added as a
// global to allow easy access everywhere.
//
// TODO(gvisor.dev/issue/6319): Remove when lisafs is default.
var LISAFSEnabled = false

// FUSEEnabled is set to true when FUSE is enabled. Added as a global to allow
// easy access everywhere. To be removed once FUSE is completed.
var FUSEEnabled = false

// Kernel represents an emulated Linux kernel. It must be initialized by calling
// Init() or LoadFrom().
//
// +stateify savable
type Kernel struct {
	// extMu serializes external changes to the Kernel with calls to
	// Kernel.SaveTo. (Kernel.SaveTo requires that the state of the Kernel
	// remains frozen for the duration of the call; it requires that the Kernel
	// is paused as a precondition, which ensures that none of the tasks
	// running within the Kernel can affect its state, but extMu is required to
	// ensure that concurrent users of the Kernel *outside* the Kernel's
	// control cannot affect its state by calling e.g.
	// Kernel.SendExternalSignal.)
	extMu sync.Mutex `state:"nosave"`

	// started is true if Start has been called. Unless otherwise specified,
	// all Kernel fields become immutable once started becomes true.
	started bool `state:"nosave"`

	// All of the following fields are immutable unless otherwise specified.

	// Platform is the platform that is used to execute tasks in the created
	// Kernel. See comment on pgalloc.MemoryFileProvider for why Platform is
	// embedded anonymously (the same issue applies).
	platform.Platform `state:"nosave"`

	// mf provides application memory.
	mf *pgalloc.MemoryFile `state:"nosave"`

	// See InitKernelArgs for the meaning of these fields.
	featureSet                  *cpuid.FeatureSet
	timekeeper                  *Timekeeper
	tasks                       *TaskSet
	rootUserNamespace           *auth.UserNamespace
	rootNetworkNamespace        *inet.Namespace
	applicationCores            uint
	useHostCores                bool
	extraAuxv                   []arch.AuxEntry
	vdso                        *loader.VDSO
	rootUTSNamespace            *UTSNamespace
	rootIPCNamespace            *IPCNamespace
	rootAbstractSocketNamespace *AbstractSocketNamespace

	// futexes is the "root" futex.Manager, from which all others are forked.
	// This is necessary to ensure that shared futexes are coherent across all
	// tasks, including those created by CreateProcess.
	futexes *futex.Manager

	// globalInit is the thread group whose leader has ID 1 in the root PID
	// namespace. globalInit is stored separately so that it is accessible even
	// after all tasks in the thread group have exited, such that ID 1 is no
	// longer mapped.
	//
	// globalInit is mutable until it is assigned by the first successful call
	// to CreateProcess, and is protected by extMu.
	globalInit *ThreadGroup

	// syslog is the kernel log.
	syslog syslog

	// runningTasksMu synchronizes disable/enable of cpuClockTicker when
	// the kernel is idle (runningTasks == 0).
	//
	// runningTasksMu is used to exclude critical sections when the timer
	// disables itself and when the first active task enables the timer,
	// ensuring that tasks always see a valid cpuClock value.
	runningTasksMu sync.Mutex `state:"nosave"`

	// runningTasks is the total count of tasks currently in
	// TaskGoroutineRunningSys or TaskGoroutineRunningApp. i.e., they are
	// not blocked or stopped.
	//
	// runningTasks must be accessed atomically. Increments from 0 to 1 are
	// further protected by runningTasksMu (see incRunningTasks).
	runningTasks int64

	// cpuClock is incremented every linux.ClockTick. cpuClock is used to
	// measure task CPU usage, since sampling monotonicClock twice on every
	// syscall turns out to be unreasonably expensive. This is similar to how
	// Linux does task CPU accounting on x86 (CONFIG_IRQ_TIME_ACCOUNTING),
	// although Linux also uses scheduler timing information to improve
	// resolution (kernel/sched/cputime.c:cputime_adjust()), which we can't do
	// since "preeemptive" scheduling is managed by the Go runtime, which
	// doesn't provide this information.
	//
	// cpuClock is mutable, and is accessed using atomic memory operations.
	cpuClock uint64

	// cpuClockTicker increments cpuClock.
	cpuClockTicker *ktime.Timer `state:"nosave"`

	// cpuClockTickerDisabled indicates that cpuClockTicker has been
	// disabled because no tasks are running.
	//
	// cpuClockTickerDisabled is protected by runningTasksMu.
	cpuClockTickerDisabled bool

	// cpuClockTickerSetting is the ktime.Setting of cpuClockTicker at the
	// point it was disabled. It is cached here to avoid a lock ordering
	// violation with cpuClockTicker.mu when runningTaskMu is held.
	//
	// cpuClockTickerSetting is only valid when cpuClockTickerDisabled is
	// true.
	//
	// cpuClockTickerSetting is protected by runningTasksMu.
	cpuClockTickerSetting ktime.Setting

	// uniqueID is used to generate unique identifiers.
	//
	// uniqueID is mutable, and is accessed using atomic memory operations.
	uniqueID uint64

	// nextInotifyCookie is a monotonically increasing counter used for
	// generating unique inotify event cookies.
	//
	// nextInotifyCookie is mutable, and is accessed using atomic memory
	// operations.
	nextInotifyCookie uint32

	// netlinkPorts manages allocation of netlink socket port IDs.
	netlinkPorts *port.Manager

	// saveStatus is nil if the sandbox has not been saved, errSaved or
	// errAutoSaved if it has been saved successfully, or the error causing the
	// sandbox to exit during save.
	// It is protected by extMu.
	saveStatus error `state:"nosave"`

	// danglingEndpoints is used to save / restore tcpip.DanglingEndpoints.
	danglingEndpoints struct{} `state:".([]tcpip.Endpoint)"`

	// sockets is the list of all network sockets in the system.
	// Protected by extMu.
	// TODO(gvisor.dev/issue/1624): Only used by VFS1.
	sockets socketList

	// socketsVFS2 records all network sockets in the system. Protected by
	// extMu.
	socketsVFS2 map[*vfs.FileDescription]*SocketRecord

	// nextSocketRecord is the next entry number to use in sockets. Protected
	// by extMu.
	nextSocketRecord uint64

	// deviceRegistry is used to save/restore device.SimpleDevices.
	deviceRegistry struct{} `state:".(*device.Registry)"`

	// DirentCacheLimiter controls the number of total dirent entries can be in
	// caches. Not all caches use it, only the caches that use host resources use
	// the limiter. It may be nil if disabled.
	DirentCacheLimiter *fs.DirentCacheLimiter

	// unimplementedSyscallEmitterOnce is used in the initialization of
	// unimplementedSyscallEmitter.
	unimplementedSyscallEmitterOnce sync.Once `state:"nosave"`

	// unimplementedSyscallEmitter is used to emit unimplemented syscall
	// events. This is initialized lazily on the first unimplemented
	// syscall.
	unimplementedSyscallEmitter eventchannel.Emitter `state:"nosave"`

	// SpecialOpts contains special kernel options.
	SpecialOpts

	// vfs keeps the filesystem state used across the kernel.
	vfs vfs.VirtualFilesystem

	// hostMount is the Mount used for file descriptors that were imported
	// from the host.
	hostMount *vfs.Mount

	// pipeMount is the Mount used for pipes created by the pipe() and pipe2()
	// syscalls (as opposed to named pipes created by mknod()).
	pipeMount *vfs.Mount

	// shmMount is the Mount used for anonymous files created by the
	// memfd_create() syscalls. It is analagous to Linux's shm_mnt.
	shmMount *vfs.Mount

	// socketMount is the Mount used for sockets created by the socket() and
	// socketpair() syscalls. There are several cases where a socket dentry will
	// not be contained in socketMount:
	// 1. Socket files created by mknod()
	// 2. Socket fds imported from the host (Kernel.hostMount is used for these)
	// 3. Socket files created by binding Unix sockets to a file path
	socketMount *vfs.Mount

	// If set to true, report address space activation waits as if the task is in
	// external wait so that the watchdog doesn't report the task stuck.
	SleepForAddressSpaceActivation bool

	// Exceptions to YAMA ptrace restrictions. Each key-value pair represents a
	// tracee-tracer relationship. The key is a process (technically, the thread
	// group leader) that can be traced by any thread that is a descendant of the
	// value. If the value is nil, then anyone can trace the process represented by
	// the key.
	//
	// ptraceExceptions is protected by the TaskSet mutex.
	ptraceExceptions map[*Task]*Task

	// YAMAPtraceScope is the current level of YAMA ptrace restrictions.
	YAMAPtraceScope int32

	// cgroupRegistry contains the set of active cgroup controllers on the
	// system. It is controller by cgroupfs. Nil if cgroupfs is unavailable on
	// the system.
	cgroupRegistry *CgroupRegistry
}

// InitKernelArgs holds arguments to Init.
type InitKernelArgs struct {
	// FeatureSet is the emulated CPU feature set.
	FeatureSet *cpuid.FeatureSet

	// Timekeeper manages time for all tasks in the system.
	Timekeeper *Timekeeper

	// RootUserNamespace is the root user namespace.
	RootUserNamespace *auth.UserNamespace

	// RootNetworkNamespace is the root network namespace. If nil, no networking
	// will be available.
	RootNetworkNamespace *inet.Namespace

	// ApplicationCores is the number of logical CPUs visible to sandboxed
	// applications. The set of logical CPU IDs is [0, ApplicationCores); thus
	// ApplicationCores is analogous to Linux's nr_cpu_ids, the index of the
	// most significant bit in cpu_possible_mask + 1.
	ApplicationCores uint

	// If UseHostCores is true, Task.CPU() returns the task goroutine's CPU
	// instead of a virtualized CPU number, and Task.CopyToCPUMask() is a
	// no-op. If ApplicationCores is less than hostcpu.MaxPossibleCPU(), it
	// will be overridden.
	UseHostCores bool

	// ExtraAuxv contains additional auxiliary vector entries that are added to
	// each process by the ELF loader.
	ExtraAuxv []arch.AuxEntry

	// Vdso holds the VDSO and its parameter page.
	Vdso *loader.VDSO

	// RootUTSNamespace is the root UTS namespace.
	RootUTSNamespace *UTSNamespace

	// RootIPCNamespace is the root IPC namespace.
	RootIPCNamespace *IPCNamespace

	// RootAbstractSocketNamespace is the root Abstract Socket namespace.
	RootAbstractSocketNamespace *AbstractSocketNamespace

	// PIDNamespace is the root PID namespace.
	PIDNamespace *PIDNamespace
}

// Init initialize the Kernel with no tasks.
//
// Callers must manually set Kernel.Platform and call Kernel.SetMemoryFile
// before calling Init.
func (k *Kernel) Init(args InitKernelArgs) error {
	if args.FeatureSet == nil {
		return fmt.Errorf("args.FeatureSet is nil")
	}
	if args.Timekeeper == nil {
		return fmt.Errorf("args.Timekeeper is nil")
	}
	if args.Timekeeper.clocks == nil {
		return fmt.Errorf("must call Timekeeper.SetClocks() before Kernel.Init()")
	}
	if args.RootUserNamespace == nil {
		return fmt.Errorf("args.RootUserNamespace is nil")
	}
	if args.ApplicationCores == 0 {
		return fmt.Errorf("args.ApplicationCores is 0")
	}

	k.featureSet = args.FeatureSet
	k.timekeeper = args.Timekeeper
	k.tasks = newTaskSet(args.PIDNamespace)
	k.rootUserNamespace = args.RootUserNamespace
	k.rootUTSNamespace = args.RootUTSNamespace
	k.rootIPCNamespace = args.RootIPCNamespace
	k.rootAbstractSocketNamespace = args.RootAbstractSocketNamespace
	k.rootNetworkNamespace = args.RootNetworkNamespace
	if k.rootNetworkNamespace == nil {
		k.rootNetworkNamespace = inet.NewRootNamespace(nil, nil)
	}
	k.applicationCores = args.ApplicationCores
	if args.UseHostCores {
		k.useHostCores = true
		maxCPU, err := hostcpu.MaxPossibleCPU()
		if err != nil {
			return fmt.Errorf("failed to get maximum CPU number: %v", err)
		}
		minAppCores := uint(maxCPU) + 1
		if k.applicationCores < minAppCores {
			log.Infof("UseHostCores enabled: increasing ApplicationCores from %d to %d", k.applicationCores, minAppCores)
			k.applicationCores = minAppCores
		}
	}
	k.extraAuxv = args.ExtraAuxv
	k.vdso = args.Vdso
	k.futexes = futex.NewManager()
	k.netlinkPorts = port.New()
	k.ptraceExceptions = make(map[*Task]*Task)
	k.YAMAPtraceScope = linux.YAMA_SCOPE_RELATIONAL

	if VFS2Enabled {
		ctx := k.SupervisorContext()
		if err := k.vfs.Init(ctx); err != nil {
			return fmt.Errorf("failed to initialize VFS: %v", err)
		}

		pipeFilesystem, err := pipefs.NewFilesystem(&k.vfs)
		if err != nil {
			return fmt.Errorf("failed to create pipefs filesystem: %v", err)
		}
		defer pipeFilesystem.DecRef(ctx)
		pipeMount, err := k.vfs.NewDisconnectedMount(pipeFilesystem, nil, &vfs.MountOptions{})
		if err != nil {
			return fmt.Errorf("failed to create pipefs mount: %v", err)
		}
		k.pipeMount = pipeMount

		tmpfsFilesystem, tmpfsRoot, err := tmpfs.NewFilesystem(ctx, &k.vfs, auth.NewRootCredentials(k.rootUserNamespace))
		if err != nil {
			return fmt.Errorf("failed to create tmpfs filesystem: %v", err)
		}
		defer tmpfsFilesystem.DecRef(ctx)
		defer tmpfsRoot.DecRef(ctx)
		shmMount, err := k.vfs.NewDisconnectedMount(tmpfsFilesystem, tmpfsRoot, &vfs.MountOptions{})
		if err != nil {
			return fmt.Errorf("failed to create tmpfs mount: %v", err)
		}
		k.shmMount = shmMount

		socketFilesystem, err := sockfs.NewFilesystem(&k.vfs)
		if err != nil {
			return fmt.Errorf("failed to create sockfs filesystem: %v", err)
		}
		defer socketFilesystem.DecRef(ctx)
		socketMount, err := k.vfs.NewDisconnectedMount(socketFilesystem, nil, &vfs.MountOptions{})
		if err != nil {
			return fmt.Errorf("failed to create sockfs mount: %v", err)
		}
		k.socketMount = socketMount

		k.socketsVFS2 = make(map[*vfs.FileDescription]*SocketRecord)

		k.cgroupRegistry = newCgroupRegistry()
	}
	return nil
}

// SaveTo saves the state of k to w.
//
// Preconditions: The kernel must be paused throughout the call to SaveTo.
func (k *Kernel) SaveTo(ctx context.Context, w wire.Writer) error {
	saveStart := time.Now()

	// Do not allow other Kernel methods to affect it while it's being saved.
	k.extMu.Lock()
	defer k.extMu.Unlock()

	// Stop time.
	k.pauseTimeLocked(ctx)
	defer k.resumeTimeLocked(ctx)

	// Evict all evictable MemoryFile allocations.
	k.mf.StartEvictions()
	k.mf.WaitForEvictions()

	if VFS2Enabled {
		// Discard unsavable mappings, such as those for host file descriptors.
		if err := k.invalidateUnsavableMappings(ctx); err != nil {
			return fmt.Errorf("failed to invalidate unsavable mappings: %v", err)
		}

		// Prepare filesystems for saving. This must be done after
		// invalidateUnsavableMappings(), since dropping memory mappings may
		// affect filesystem state (e.g. page cache reference counts).
		if err := k.vfs.PrepareSave(ctx); err != nil {
			return err
		}
	} else {
		// Flush cached file writes to backing storage. This must come after
		// MemoryFile eviction since eviction may cause file writes.
		if err := k.flushWritesToFiles(ctx); err != nil {
			return err
		}

		// Remove all epoll waiter objects from underlying wait queues.
		// NOTE: for programs to resume execution in future snapshot scenarios,
		// we will need to re-establish these waiter objects after saving.
		k.tasks.unregisterEpollWaiters(ctx)

		// Clear the dirent cache before saving because Dirents must be Loaded in a
		// particular order (parents before children), and Loading dirents from a cache
		// breaks that order.
		if err := k.flushMountSourceRefs(ctx); err != nil {
			return err
		}

		// Ensure that all inode and mount release operations have completed.
		fs.AsyncBarrier()

		// Once all fs work has completed (flushed references have all been released),
		// reset mount mappings. This allows individual mounts to save how inodes map
		// to filesystem resources. Without this, fs.Inodes cannot be restored.
		fs.SaveInodeMappings()

		// Discard unsavable mappings, such as those for host file descriptors.
		// This must be done after waiting for "asynchronous fs work", which
		// includes async I/O that may touch application memory.
		//
		// TODO(gvisor.dev/issue/1624): This rationale is believed to be
		// obsolete since AIO callbacks are now waited-for by Kernel.Pause(),
		// but this order is conservatively retained for VFS1.
		if err := k.invalidateUnsavableMappings(ctx); err != nil {
			return fmt.Errorf("failed to invalidate unsavable mappings: %v", err)
		}
	}

	// Save the CPUID FeatureSet before the rest of the kernel so we can
	// verify its compatibility on restore before attempting to restore the
	// entire kernel, which may fail on an incompatible machine.
	//
	// N.B. This will also be saved along with the full kernel save below.
	cpuidStart := time.Now()
	if _, err := state.Save(ctx, w, k.FeatureSet()); err != nil {
		return err
	}
	log.Infof("CPUID save took [%s].", time.Since(cpuidStart))

	// Save the timekeeper's state.

	// Save the kernel state.
	kernelStart := time.Now()
	stats, err := state.Save(ctx, w, k)
	if err != nil {
		return err
	}
	log.Infof("Kernel save stats: %s", stats.String())
	log.Infof("Kernel save took [%s].", time.Since(kernelStart))

	// Save the memory file's state.
	memoryStart := time.Now()
	if err := k.mf.SaveTo(ctx, w); err != nil {
		return err
	}
	log.Infof("Memory save took [%s].", time.Since(memoryStart))

	log.Infof("Overall save took [%s].", time.Since(saveStart))

	return nil
}

// flushMountSourceRefs flushes the MountSources for all mounted filesystems
// and open FDs.
//
// Preconditions: !VFS2Enabled.
func (k *Kernel) flushMountSourceRefs(ctx context.Context) error {
	// Flush all mount sources for currently mounted filesystems in each task.
	flushed := make(map[*fs.MountNamespace]struct{})
	k.tasks.mu.RLock()
	k.tasks.forEachThreadGroupLocked(func(tg *ThreadGroup) {
		if _, ok := flushed[tg.mounts]; ok {
			// Already flushed.
			return
		}
		tg.mounts.FlushMountSourceRefs()
		flushed[tg.mounts] = struct{}{}
	})
	k.tasks.mu.RUnlock()

	// There may be some open FDs whose filesystems have been unmounted. We
	// must flush those as well.
	return k.tasks.forEachFDPaused(ctx, func(file *fs.File, _ *vfs.FileDescription) error {
		file.Dirent.Inode.MountSource.FlushDirentRefs()
		return nil
	})
}

// forEachFDPaused applies the given function to each open file descriptor in
// each task.
//
// Precondition: Must be called with the kernel paused.
func (ts *TaskSet) forEachFDPaused(ctx context.Context, f func(*fs.File, *vfs.FileDescription) error) (err error) {
	ts.mu.RLock()
	defer ts.mu.RUnlock()
	for t := range ts.Root.tids {
		// We can skip locking Task.mu here since the kernel is paused.
		if t.fdTable == nil {
			continue
		}
		t.fdTable.forEach(ctx, func(_ int32, file *fs.File, fileVFS2 *vfs.FileDescription, _ FDFlags) {
			if lastErr := f(file, fileVFS2); lastErr != nil && err == nil {
				err = lastErr
			}
		})
	}
	return err
}

// Preconditions: !VFS2Enabled.
func (k *Kernel) flushWritesToFiles(ctx context.Context) error {
	return k.tasks.forEachFDPaused(ctx, func(file *fs.File, _ *vfs.FileDescription) error {
		if flags := file.Flags(); !flags.Write {
			return nil
		}
		if sattr := file.Dirent.Inode.StableAttr; !fs.IsFile(sattr) && !fs.IsDir(sattr) {
			return nil
		}
		// Here we need all metadata synced.
		syncErr := file.Fsync(ctx, 0, fs.FileMaxOffset, fs.SyncAll)
		if err := fs.SaveFileFsyncError(syncErr); err != nil {
			name, _ := file.Dirent.FullName(nil /* root */)
			// Wrap this error in ErrSaveRejection so that it will trigger a save
			// error, rather than a panic. This also allows us to distinguish Fsync
			// errors from state file errors in state.Save.
			return &fs.ErrSaveRejection{
				Err: fmt.Errorf("%q was not sufficiently synced: %w", name, err),
			}
		}
		return nil
	})
}

// Preconditions: !VFS2Enabled.
func (ts *TaskSet) unregisterEpollWaiters(ctx context.Context) {
	ts.mu.RLock()
	defer ts.mu.RUnlock()

	// Tasks that belong to the same process could potentially point to the
	// same FDTable. So we retain a map of processed ones to avoid
	// processing the same FDTable multiple times.
	processed := make(map[*FDTable]struct{})
	for t := range ts.Root.tids {
		// We can skip locking Task.mu here since the kernel is paused.
		if t.fdTable == nil {
			continue
		}
		if _, ok := processed[t.fdTable]; ok {
			continue
		}
		t.fdTable.forEach(ctx, func(_ int32, file *fs.File, _ *vfs.FileDescription, _ FDFlags) {
			if e, ok := file.FileOperations.(*epoll.EventPoll); ok {
				e.UnregisterEpollWaiters()
			}
		})
		processed[t.fdTable] = struct{}{}
	}
}

// Preconditions: The kernel must be paused.
func (k *Kernel) invalidateUnsavableMappings(ctx context.Context) error {
	invalidated := make(map[*mm.MemoryManager]struct{})
	k.tasks.mu.RLock()
	defer k.tasks.mu.RUnlock()
	for t := range k.tasks.Root.tids {
		// We can skip locking Task.mu here since the kernel is paused.
		if memMgr := t.image.MemoryManager; memMgr != nil {
			if _, ok := invalidated[memMgr]; !ok {
				if err := memMgr.InvalidateUnsavable(ctx); err != nil {
					return err
				}
				invalidated[memMgr] = struct{}{}
			}
		}
		// I really wish we just had a sync.Map of all MMs...
		if r, ok := t.runState.(*runSyscallAfterExecStop); ok {
			if err := r.image.MemoryManager.InvalidateUnsavable(ctx); err != nil {
				return err
			}
		}
	}
	return nil
}

// LoadFrom returns a new Kernel loaded from args.
func (k *Kernel) LoadFrom(ctx context.Context, r wire.Reader, timeReady chan struct{}, net inet.Stack, clocks sentrytime.Clocks, vfsOpts *vfs.CompleteRestoreOptions) error {
	loadStart := time.Now()

	initAppCores := k.applicationCores

	// Load the pre-saved CPUID FeatureSet.
	//
	// N.B. This was also saved along with the full kernel below, so we
	// don't need to explicitly install it in the Kernel.
	cpuidStart := time.Now()
	var features cpuid.FeatureSet
	if _, err := state.Load(ctx, r, &features); err != nil {
		return err
	}
	log.Infof("CPUID load took [%s].", time.Since(cpuidStart))

	// Verify that the FeatureSet is usable on this host. We do this before
	// Kernel load so that the explicit CPUID mismatch error has priority
	// over floating point state restore errors that may occur on load on
	// an incompatible machine.
	if err := features.CheckHostCompatible(); err != nil {
		return err
	}

	// Load the kernel state.
	kernelStart := time.Now()
	stats, err := state.Load(ctx, r, k)
	if err != nil {
		return err
	}
	log.Infof("Kernel load stats: %s", stats.String())
	log.Infof("Kernel load took [%s].", time.Since(kernelStart))

	// rootNetworkNamespace should be populated after loading the state file.
	// Restore the root network stack.
	k.rootNetworkNamespace.RestoreRootStack(net)

	// Load the memory file's state.
	memoryStart := time.Now()
	if err := k.mf.LoadFrom(ctx, r); err != nil {
		return err
	}
	log.Infof("Memory load took [%s].", time.Since(memoryStart))

	log.Infof("Overall load took [%s]", time.Since(loadStart))

	k.Timekeeper().SetClocks(clocks)

	if timeReady != nil {
		close(timeReady)
	}

	if net != nil {
		net.Resume()
	}

	if VFS2Enabled {
		if err := k.vfs.CompleteRestore(ctx, vfsOpts); err != nil {
			return err
		}
	} else {
		// Ensure that all pending asynchronous work is complete:
		//   - namedpipe opening
		//   - inode file opening
		if err := fs.AsyncErrorBarrier(); err != nil {
			return err
		}
	}

	tcpip.AsyncLoading.Wait()

	log.Infof("Overall load took [%s] after async work", time.Since(loadStart))

	// Applications may size per-cpu structures based on k.applicationCores, so
	// it can't change across save/restore. When we are virtualizing CPU
	// numbers, this isn't a problem. However, when we are exposing host CPU
	// assignments, we can't tolerate an increase in the number of host CPUs,
	// which could result in getcpu(2) returning CPUs that applications expect
	// not to exist.
	if k.useHostCores && initAppCores > k.applicationCores {
		return fmt.Errorf("UseHostCores enabled: can't increase ApplicationCores from %d to %d after restore", k.applicationCores, initAppCores)
	}

	return nil
}

// UniqueID returns a unique identifier.
func (k *Kernel) UniqueID() uint64 {
	id := atomic.AddUint64(&k.uniqueID, 1)
	if id == 0 {
		panic("unique identifier generator wrapped around")
	}
	return id
}

// CreateProcessArgs holds arguments to kernel.CreateProcess.
type CreateProcessArgs struct {
	// Filename is the filename to load as the init binary.
	//
	// If this is provided as "", File will be checked, then the file will be
	// guessed via Argv[0].
	Filename string

	// File is a passed host FD pointing to a file to load as the init binary.
	//
	// This is checked if and only if Filename is "".
	File fsbridge.File

	// Argvv is a list of arguments.
	Argv []string

	// Envv is a list of environment variables.
	Envv []string

	// WorkingDirectory is the initial working directory.
	//
	// This defaults to the root if empty.
	WorkingDirectory string

	// Credentials is the initial credentials.
	Credentials *auth.Credentials

	// FDTable is the initial set of file descriptors. If CreateProcess succeeds,
	// it takes a reference on FDTable.
	FDTable *FDTable

	// Umask is the initial umask.
	Umask uint

	// Limits is the initial resource limits.
	Limits *limits.LimitSet

	// MaxSymlinkTraversals is the maximum number of symlinks to follow
	// during resolution.
	MaxSymlinkTraversals uint

	// UTSNamespace is the initial UTS namespace.
	UTSNamespace *UTSNamespace

	// IPCNamespace is the initial IPC namespace.
	IPCNamespace *IPCNamespace

	// PIDNamespace is the initial PID Namespace.
	PIDNamespace *PIDNamespace

	// AbstractSocketNamespace is the initial Abstract Socket namespace.
	AbstractSocketNamespace *AbstractSocketNamespace

	// MountNamespace optionally contains the mount namespace for this
	// process. If nil, the init process's mount namespace is used.
	//
	// Anyone setting MountNamespace must donate a reference (i.e.
	// increment it).
	MountNamespace *fs.MountNamespace

	// MountNamespaceVFS2 optionally contains the mount namespace for this
	// process. If nil, the init process's mount namespace is used.
	//
	// Anyone setting MountNamespaceVFS2 must donate a reference (i.e.
	// increment it).
	MountNamespaceVFS2 *vfs.MountNamespace

	// ContainerID is the container that the process belongs to.
	ContainerID string
}

// NewContext returns a context.Context that represents the task that will be
// created by args.NewContext(k).
func (args *CreateProcessArgs) NewContext(k *Kernel) *createProcessContext {
	return &createProcessContext{
		Logger: log.Log(),
		k:      k,
		args:   args,
	}
}

// createProcessContext is a context.Context that represents the context
// associated with a task that is being created.
type createProcessContext struct {
	context.NoopSleeper
	log.Logger
	k    *Kernel
	args *CreateProcessArgs
}

// Value implements context.Context.Value.
func (ctx *createProcessContext) Value(key interface{}) interface{} {
	switch key {
	case CtxKernel:
		return ctx.k
	case CtxPIDNamespace:
		return ctx.args.PIDNamespace
	case CtxUTSNamespace:
		return ctx.args.UTSNamespace
	case CtxIPCNamespace:
		ipcns := ctx.args.IPCNamespace
		ipcns.IncRef()
		return ipcns
	case auth.CtxCredentials:
		return ctx.args.Credentials
	case fs.CtxRoot:
		if ctx.args.MountNamespace != nil {
			// MountNamespace.Root() will take a reference on the root dirent for us.
			return ctx.args.MountNamespace.Root()
		}
		return nil
	case vfs.CtxRoot:
		if ctx.args.MountNamespaceVFS2 == nil {
			return nil
		}
		root := ctx.args.MountNamespaceVFS2.Root()
		root.IncRef()
		return root
	case vfs.CtxMountNamespace:
		if ctx.k.globalInit == nil {
			return nil
		}
		mntns := ctx.k.GlobalInit().Leader().MountNamespaceVFS2()
		mntns.IncRef()
		return mntns
	case fs.CtxDirentCacheLimiter:
		return ctx.k.DirentCacheLimiter
	case inet.CtxStack:
		return ctx.k.RootNetworkNamespace().Stack()
	case ktime.CtxRealtimeClock:
		return ctx.k.RealtimeClock()
	case limits.CtxLimits:
		return ctx.args.Limits
	case pgalloc.CtxMemoryFile:
		return ctx.k.mf
	case pgalloc.CtxMemoryFileProvider:
		return ctx.k
	case platform.CtxPlatform:
		return ctx.k
	case uniqueid.CtxGlobalUniqueID:
		return ctx.k.UniqueID()
	case uniqueid.CtxGlobalUniqueIDProvider:
		return ctx.k
	case uniqueid.CtxInotifyCookie:
		return ctx.k.GenerateInotifyCookie()
	case unimpl.CtxEvents:
		return ctx.k
	default:
		return nil
	}
}

// CreateProcess creates a new task in a new thread group with the given
// options. The new task has no parent and is in the root PID namespace.
//
// If k.Start() has already been called, then the created process must be
// started by calling kernel.StartProcess(tg).
//
// If k.Start() has not yet been called, then the created task will begin
// running when k.Start() is called.
//
// CreateProcess has no analogue in Linux; it is used to create the initial
// application task, as well as processes started by the control server.
func (k *Kernel) CreateProcess(args CreateProcessArgs) (*ThreadGroup, ThreadID, error) {
	k.extMu.Lock()
	defer k.extMu.Unlock()
	log.Infof("EXEC: %v", args.Argv)

	ctx := args.NewContext(k)

	var (
		opener    fsbridge.Lookup
		fsContext *FSContext
		mntns     *fs.MountNamespace
		mntnsVFS2 *vfs.MountNamespace
	)

	if VFS2Enabled {
		mntnsVFS2 = args.MountNamespaceVFS2
		if mntnsVFS2 == nil {
			// Add a reference to the namespace, which is transferred to the new process.
			mntnsVFS2 = k.globalInit.Leader().MountNamespaceVFS2()
			mntnsVFS2.IncRef()
		}
		// Get the root directory from the MountNamespace.
		root := mntnsVFS2.Root()
		root.IncRef()
		defer root.DecRef(ctx)

		// Grab the working directory.
		wd := root // Default.
		if args.WorkingDirectory != "" {
			pop := vfs.PathOperation{
				Root:               root,
				Start:              wd,
				Path:               fspath.Parse(args.WorkingDirectory),
				FollowFinalSymlink: true,
			}
			var err error
			wd, err = k.VFS().GetDentryAt(ctx, args.Credentials, &pop, &vfs.GetDentryOptions{
				CheckSearchable: true,
			})
			if err != nil {
				return nil, 0, fmt.Errorf("failed to find initial working directory %q: %v", args.WorkingDirectory, err)
			}
			defer wd.DecRef(ctx)
		}
		opener = fsbridge.NewVFSLookup(mntnsVFS2, root, wd)
		fsContext = NewFSContextVFS2(root, wd, args.Umask)

	} else {
		mntns = args.MountNamespace
		if mntns == nil {
			mntns = k.GlobalInit().Leader().MountNamespace()
			mntns.IncRef()
		}
		// Get the root directory from the MountNamespace.
		root := mntns.Root()
		// The call to newFSContext below will take a reference on root, so we
		// don't need to hold this one.
		defer root.DecRef(ctx)

		// Grab the working directory.
		remainingTraversals := args.MaxSymlinkTraversals
		wd := root // Default.
		if args.WorkingDirectory != "" {
			var err error
			wd, err = mntns.FindInode(ctx, root, nil, args.WorkingDirectory, &remainingTraversals)
			if err != nil {
				return nil, 0, fmt.Errorf("failed to find initial working directory %q: %v", args.WorkingDirectory, err)
			}
			defer wd.DecRef(ctx)
		}
		opener = fsbridge.NewFSLookup(mntns, root, wd)
		fsContext = newFSContext(root, wd, args.Umask)
	}

	tg := k.NewThreadGroup(mntns, args.PIDNamespace, NewSignalHandlers(), linux.SIGCHLD, args.Limits)
	cu := cleanup.Make(func() {
		tg.Release(ctx)
	})
	defer cu.Clean()

	// Check which file to start from.
	switch {
	case args.Filename != "":
		// If a filename is given, take that.
		// Set File to nil so we resolve the path in LoadTaskImage.
		args.File = nil
	case args.File != nil:
		// If File is set, take the File provided directly.
	default:
		// Otherwise look at Argv and see if the first argument is a valid path.
		if len(args.Argv) == 0 {
			return nil, 0, fmt.Errorf("no filename or command provided")
		}
		if !filepath.IsAbs(args.Argv[0]) {
			return nil, 0, fmt.Errorf("'%s' is not an absolute path", args.Argv[0])
		}
		args.Filename = args.Argv[0]
	}

	// Create a fresh task context.
	remainingTraversals := args.MaxSymlinkTraversals
	loadArgs := loader.LoadArgs{
		Opener:              opener,
		RemainingTraversals: &remainingTraversals,
		ResolveFinal:        true,
		Filename:            args.Filename,
		File:                args.File,
		CloseOnExec:         false,
		Argv:                args.Argv,
		Envv:                args.Envv,
		Features:            k.featureSet,
	}

	image, se := k.LoadTaskImage(ctx, loadArgs)
	if se != nil {
		return nil, 0, errors.New(se.String())
	}

	// Take a reference on the FDTable, which will be transferred to
	// TaskSet.NewTask().
	args.FDTable.IncRef()

	// Create the task.
	config := &TaskConfig{
		Kernel:                  k,
		ThreadGroup:             tg,
		TaskImage:               image,
		FSContext:               fsContext,
		FDTable:                 args.FDTable,
		Credentials:             args.Credentials,
		NetworkNamespace:        k.RootNetworkNamespace(),
		AllowedCPUMask:          sched.NewFullCPUSet(k.applicationCores),
		UTSNamespace:            args.UTSNamespace,
		IPCNamespace:            args.IPCNamespace,
		AbstractSocketNamespace: args.AbstractSocketNamespace,
		MountNamespaceVFS2:      mntnsVFS2,
		ContainerID:             args.ContainerID,
	}
	t, err := k.tasks.NewTask(ctx, config)
	if err != nil {
		return nil, 0, err
	}
	t.traceExecEvent(image) // Simulate exec for tracing.

	// Success.
	cu.Release()
	tgid := k.tasks.Root.IDOfThreadGroup(tg)
	if k.globalInit == nil {
		k.globalInit = tg
	}
	return tg, tgid, nil
}

// StartProcess starts running a process that was created with CreateProcess.
func (k *Kernel) StartProcess(tg *ThreadGroup) {
	t := tg.Leader()
	tid := k.tasks.Root.IDOfTask(t)
	t.Start(tid)
}

// Start starts execution of all tasks in k.
//
// Preconditions: Start may be called exactly once.
func (k *Kernel) Start() error {
	k.extMu.Lock()
	defer k.extMu.Unlock()

	if k.globalInit == nil {
		return fmt.Errorf("kernel contains no tasks")
	}
	if k.started {
		return fmt.Errorf("kernel already started")
	}

	k.started = true
	k.cpuClockTicker = ktime.NewTimer(k.timekeeper.monotonicClock, newKernelCPUClockTicker(k))
	k.cpuClockTicker.Swap(ktime.Setting{
		Enabled: true,
		Period:  linux.ClockTick,
	})
	// If k was created by LoadKernelFrom, timers were stopped during
	// Kernel.SaveTo and need to be resumed. If k was created by NewKernel,
	// this is a no-op.
	k.resumeTimeLocked(k.SupervisorContext())
	// Start task goroutines.
	k.tasks.mu.RLock()
	defer k.tasks.mu.RUnlock()
	for t, tid := range k.tasks.Root.tids {
		t.Start(tid)
	}
	return nil
}

// pauseTimeLocked pauses all Timers and Timekeeper updates.
//
// Preconditions:
// * Any task goroutines running in k must be stopped.
// * k.extMu must be locked.
func (k *Kernel) pauseTimeLocked(ctx context.Context) {
	// k.cpuClockTicker may be nil since Kernel.SaveTo() may be called before
	// Kernel.Start().
	if k.cpuClockTicker != nil {
		k.cpuClockTicker.Pause()
	}

	// By precondition, nothing else can be interacting with PIDNamespace.tids
	// or FDTable.files, so we can iterate them without synchronization. (We
	// can't hold the TaskSet mutex when pausing thread group timers because
	// thread group timers call ThreadGroup.SendSignal, which takes the TaskSet
	// mutex, while holding the Timer mutex.)
	for t := range k.tasks.Root.tids {
		if t == t.tg.leader {
			t.tg.itimerRealTimer.Pause()
			for _, it := range t.tg.timers {
				it.PauseTimer()
			}
		}
		// This means we'll iterate FDTables shared by multiple tasks repeatedly,
		// but ktime.Timer.Pause is idempotent so this is harmless.
		if t.fdTable != nil {
			t.fdTable.forEach(ctx, func(_ int32, file *fs.File, fd *vfs.FileDescription, _ FDFlags) {
				if VFS2Enabled {
					if tfd, ok := fd.Impl().(*timerfd.TimerFileDescription); ok {
						tfd.PauseTimer()
					}
				} else {
					if tfd, ok := file.FileOperations.(*oldtimerfd.TimerOperations); ok {
						tfd.PauseTimer()
					}
				}
			})
		}
	}
	k.timekeeper.PauseUpdates()
}

// resumeTimeLocked resumes all Timers and Timekeeper updates. If
// pauseTimeLocked has not been previously called, resumeTimeLocked has no
// effect.
//
// Preconditions:
// * Any task goroutines running in k must be stopped.
// * k.extMu must be locked.
func (k *Kernel) resumeTimeLocked(ctx context.Context) {
	if k.cpuClockTicker != nil {
		k.cpuClockTicker.Resume()
	}

	k.timekeeper.ResumeUpdates()
	for t := range k.tasks.Root.tids {
		if t == t.tg.leader {
			t.tg.itimerRealTimer.Resume()
			for _, it := range t.tg.timers {
				it.ResumeTimer()
			}
		}
		if t.fdTable != nil {
			t.fdTable.forEach(ctx, func(_ int32, file *fs.File, fd *vfs.FileDescription, _ FDFlags) {
				if VFS2Enabled {
					if tfd, ok := fd.Impl().(*timerfd.TimerFileDescription); ok {
						tfd.ResumeTimer()
					}
				} else {
					if tfd, ok := file.FileOperations.(*oldtimerfd.TimerOperations); ok {
						tfd.ResumeTimer()
					}
				}
			})
		}
	}
}

func (k *Kernel) incRunningTasks() {
	for {
		tasks := atomic.LoadInt64(&k.runningTasks)
		if tasks != 0 {
			// Standard case. Simply increment.
			if !atomic.CompareAndSwapInt64(&k.runningTasks, tasks, tasks+1) {
				continue
			}
			return
		}

		// Transition from 0 -> 1. Synchronize with other transitions and timer.
		k.runningTasksMu.Lock()
		tasks = atomic.LoadInt64(&k.runningTasks)
		if tasks != 0 {
			// We're no longer the first task, no need to
			// re-enable.
			atomic.AddInt64(&k.runningTasks, 1)
			k.runningTasksMu.Unlock()
			return
		}

		if !k.cpuClockTickerDisabled {
			// Timer was never disabled.
			atomic.StoreInt64(&k.runningTasks, 1)
			k.runningTasksMu.Unlock()
			return
		}

		// We need to update cpuClock for all of the ticks missed while we
		// slept, and then re-enable the timer.
		//
		// The Notify in Swap isn't sufficient. kernelCPUClockTicker.Notify
		// always increments cpuClock by 1 regardless of the number of
		// expirations as a heuristic to avoid over-accounting in cases of CPU
		// throttling.
		//
		// We want to cover the normal case, when all time should be accounted,
		// so we increment for all expirations. Throttling is less concerning
		// here because the ticker is only disabled from Notify. This means
		// that Notify must schedule and compensate for the throttled period
		// before the timer is disabled. Throttling while the timer is disabled
		// doesn't matter, as nothing is running or reading cpuClock anyways.
		//
		// S/R also adds complication, as there are two cases. Recall that
		// monotonicClock will jump forward on restore.
		//
		// 1. If the ticker is enabled during save, then on Restore Notify is
		// called with many expirations, covering the time jump, but cpuClock
		// is only incremented by 1.
		//
		// 2. If the ticker is disabled during save, then after Restore the
		// first wakeup will call this function and cpuClock will be
		// incremented by the number of expirations across the S/R.
		//
		// These cause very different value of cpuClock. But again, since
		// nothing was running while the ticker was disabled, those differences
		// don't matter.
		setting, exp := k.cpuClockTickerSetting.At(k.timekeeper.monotonicClock.Now())
		if exp > 0 {
			atomic.AddUint64(&k.cpuClock, exp)
		}

		// Now that cpuClock is updated it is safe to allow other tasks to
		// transition to running.
		atomic.StoreInt64(&k.runningTasks, 1)

		// N.B. we must unlock before calling Swap to maintain lock ordering.
		//
		// cpuClockTickerDisabled need not wait until after Swap to become
		// true. It is sufficient that the timer *will* be enabled.
		k.cpuClockTickerDisabled = false
		k.runningTasksMu.Unlock()

		// This won't call Notify (unless it's been ClockTick since setting.At
		// above). This means we skip the thread group work in Notify. However,
		// since nothing was running while we were disabled, none of the timers
		// could have expired.
		k.cpuClockTicker.Swap(setting)

		return
	}
}

func (k *Kernel) decRunningTasks() {
	tasks := atomic.AddInt64(&k.runningTasks, -1)
	if tasks < 0 {
		panic(fmt.Sprintf("Invalid running count %d", tasks))
	}

	// Nothing to do. The next CPU clock tick will disable the timer if
	// there is still nothing running. This provides approximately one tick
	// of slack in which we can switch back and forth between idle and
	// active without an expensive transition.
}

// WaitExited blocks until all tasks in k have exited.
func (k *Kernel) WaitExited() {
	k.tasks.liveGoroutines.Wait()
}

// Kill requests that all tasks in k immediately exit as if group exiting with
// status ws. Kill does not wait for tasks to exit.
func (k *Kernel) Kill(ws linux.WaitStatus) {
	k.extMu.Lock()
	defer k.extMu.Unlock()
	k.tasks.Kill(ws)
}

// Pause requests that all tasks in k temporarily stop executing, and blocks
// until all tasks and asynchronous I/O operations in k have stopped. Multiple
// calls to Pause nest and require an equal number of calls to Unpause to
// resume execution.
func (k *Kernel) Pause() {
	k.extMu.Lock()
	k.tasks.BeginExternalStop()
	k.extMu.Unlock()
	k.tasks.runningGoroutines.Wait()
	k.tasks.aioGoroutines.Wait()
}

// ReceiveTaskStates receives full states for all tasks.
func (k *Kernel) ReceiveTaskStates() {
	k.extMu.Lock()
	k.tasks.PullFullState()
	k.extMu.Unlock()
}

// Unpause ends the effect of a previous call to Pause. If Unpause is called
// without a matching preceding call to Pause, Unpause may panic.
func (k *Kernel) Unpause() {
	k.extMu.Lock()
	defer k.extMu.Unlock()
	k.tasks.EndExternalStop()
}

// SendExternalSignal injects a signal into the kernel.
//
// context is used only for debugging to describe how the signal was received.
//
// Preconditions: Kernel must have an init process.
func (k *Kernel) SendExternalSignal(info *linux.SignalInfo, context string) {
	k.extMu.Lock()
	defer k.extMu.Unlock()
	k.sendExternalSignal(info, context)
}

// SendExternalSignalThreadGroup injects a signal into an specific ThreadGroup.
// This function doesn't skip signals like SendExternalSignal does.
func (k *Kernel) SendExternalSignalThreadGroup(tg *ThreadGroup, info *linux.SignalInfo) error {
	k.extMu.Lock()
	defer k.extMu.Unlock()
	return tg.SendSignal(info)
}

// SendContainerSignal sends the given signal to all processes inside the
// namespace that match the given container ID.
func (k *Kernel) SendContainerSignal(cid string, info *linux.SignalInfo) error {
	k.extMu.Lock()
	defer k.extMu.Unlock()
	k.tasks.mu.RLock()
	defer k.tasks.mu.RUnlock()

	var lastErr error
	for tg := range k.tasks.Root.tgids {
		if tg.leader.ContainerID() == cid {
			tg.signalHandlers.mu.Lock()
			infoCopy := *info
			if err := tg.leader.sendSignalLocked(&infoCopy, true /*group*/); err != nil {
				lastErr = err
			}
			tg.signalHandlers.mu.Unlock()
		}
	}
	return lastErr
}

// RebuildTraceContexts rebuilds the trace context for all tasks.
//
// Unfortunately, if these are built while tracing is not enabled, then we will
// not have meaningful trace data. Rebuilding here ensures that we can do so
// after tracing has been enabled.
func (k *Kernel) RebuildTraceContexts() {
	// We need to pause all task goroutines because Task.rebuildTraceContext()
	// replaces Task.traceContext and Task.traceTask, which are
	// task-goroutine-exclusive (i.e. the task goroutine assumes that it can
	// access them without synchronization) for performance.
	k.Pause()
	defer k.Unpause()

	k.extMu.Lock()
	defer k.extMu.Unlock()
	k.tasks.mu.RLock()
	defer k.tasks.mu.RUnlock()

	for t, tid := range k.tasks.Root.tids {
		t.rebuildTraceContext(tid)
	}
}

// FeatureSet returns the FeatureSet.
func (k *Kernel) FeatureSet() *cpuid.FeatureSet {
	return k.featureSet
}

// Timekeeper returns the Timekeeper.
func (k *Kernel) Timekeeper() *Timekeeper {
	return k.timekeeper
}

// TaskSet returns the TaskSet.
func (k *Kernel) TaskSet() *TaskSet {
	return k.tasks
}

// RootUserNamespace returns the root UserNamespace.
func (k *Kernel) RootUserNamespace() *auth.UserNamespace {
	return k.rootUserNamespace
}

// RootUTSNamespace returns the root UTSNamespace.
func (k *Kernel) RootUTSNamespace() *UTSNamespace {
	return k.rootUTSNamespace
}

// RootIPCNamespace takes a reference and returns the root IPCNamespace.
func (k *Kernel) RootIPCNamespace() *IPCNamespace {
	k.rootIPCNamespace.IncRef()
	return k.rootIPCNamespace
}

// RootPIDNamespace returns the root PIDNamespace.
func (k *Kernel) RootPIDNamespace() *PIDNamespace {
	return k.tasks.Root
}

// RootAbstractSocketNamespace returns the root AbstractSocketNamespace.
func (k *Kernel) RootAbstractSocketNamespace() *AbstractSocketNamespace {
	return k.rootAbstractSocketNamespace
}

// RootNetworkNamespace returns the root network namespace, always non-nil.
func (k *Kernel) RootNetworkNamespace() *inet.Namespace {
	return k.rootNetworkNamespace
}

// GlobalInit returns the thread group with ID 1 in the root PID namespace, or
// nil if no such thread group exists. GlobalInit may return a thread group
// containing no tasks if the thread group has already exited.
func (k *Kernel) GlobalInit() *ThreadGroup {
	k.extMu.Lock()
	defer k.extMu.Unlock()
	return k.globalInit
}

// TestOnlySetGlobalInit sets the thread group with ID 1 in the root PID namespace.
func (k *Kernel) TestOnlySetGlobalInit(tg *ThreadGroup) {
	k.globalInit = tg
}

// ApplicationCores returns the number of CPUs visible to sandboxed
// applications.
func (k *Kernel) ApplicationCores() uint {
	return k.applicationCores
}

// RealtimeClock returns the application CLOCK_REALTIME clock.
func (k *Kernel) RealtimeClock() ktime.Clock {
	return k.timekeeper.realtimeClock
}

// MonotonicClock returns the application CLOCK_MONOTONIC clock.
func (k *Kernel) MonotonicClock() ktime.Clock {
	return k.timekeeper.monotonicClock
}

// CPUClockNow returns the current value of k.cpuClock.
func (k *Kernel) CPUClockNow() uint64 {
	return atomic.LoadUint64(&k.cpuClock)
}

// Syslog returns the syslog.
func (k *Kernel) Syslog() *syslog {
	return &k.syslog
}

// GenerateInotifyCookie generates a unique inotify event cookie.
//
// Returned values may overlap with previously returned values if the value
// space is exhausted. 0 is not a valid cookie value, all other values
// representable in a uint32 are allowed.
func (k *Kernel) GenerateInotifyCookie() uint32 {
	id := atomic.AddUint32(&k.nextInotifyCookie, 1)
	// Wrap-around is explicitly allowed for inotify event cookies.
	if id == 0 {
		id = atomic.AddUint32(&k.nextInotifyCookie, 1)
	}
	return id
}

// NetlinkPorts returns the netlink port manager.
func (k *Kernel) NetlinkPorts() *port.Manager {
	return k.netlinkPorts
}

var (
	errSaved     = errors.New("sandbox has been successfully saved")
	errAutoSaved = errors.New("sandbox has been successfully auto-saved")
)

// SaveStatus returns the sandbox save status. If it was saved successfully,
// autosaved indicates whether save was triggered by autosave. If it was not
// saved successfully, err indicates the sandbox error that caused the kernel to
// exit during save.
func (k *Kernel) SaveStatus() (saved, autosaved bool, err error) {
	k.extMu.Lock()
	defer k.extMu.Unlock()
	switch k.saveStatus {
	case nil:
		return false, false, nil
	case errSaved:
		return true, false, nil
	case errAutoSaved:
		return true, true, nil
	default:
		return false, false, k.saveStatus
	}
}

// SetSaveSuccess sets the flag indicating that save completed successfully, if
// no status was already set.
func (k *Kernel) SetSaveSuccess(autosave bool) {
	k.extMu.Lock()
	defer k.extMu.Unlock()
	if k.saveStatus == nil {
		if autosave {
			k.saveStatus = errAutoSaved
		} else {
			k.saveStatus = errSaved
		}
	}
}

// SetSaveError sets the sandbox error that caused the kernel to exit during
// save, if one is not already set.
func (k *Kernel) SetSaveError(err error) {
	k.extMu.Lock()
	defer k.extMu.Unlock()
	if k.saveStatus == nil {
		k.saveStatus = err
	}
}

// SetMemoryFile sets Kernel.mf. SetMemoryFile must be called before Init or
// LoadFrom.
func (k *Kernel) SetMemoryFile(mf *pgalloc.MemoryFile) {
	k.mf = mf
}

// MemoryFile implements pgalloc.MemoryFileProvider.MemoryFile.
func (k *Kernel) MemoryFile() *pgalloc.MemoryFile {
	return k.mf
}

// SupervisorContext returns a Context with maximum privileges in k. It should
// only be used by goroutines outside the control of the emulated kernel
// defined by e.
//
// Callers are responsible for ensuring that the returned Context is not used
// concurrently with changes to the Kernel.
func (k *Kernel) SupervisorContext() context.Context {
	return supervisorContext{
		Logger: log.Log(),
		k:      k,
	}
}

// SocketRecord represents a socket recorded in Kernel.socketsVFS2.
//
// +stateify savable
type SocketRecord struct {
	k        *Kernel
	Sock     *refs.WeakRef        // TODO(gvisor.dev/issue/1624): Only used by VFS1.
	SockVFS2 *vfs.FileDescription // Only used by VFS2.
	ID       uint64               // Socket table entry number.
}

// SocketRecordVFS1 represents a socket recorded in Kernel.sockets. It implements
// refs.WeakRefUser for sockets stored in the socket table.
//
// +stateify savable
type SocketRecordVFS1 struct {
	socketEntry
	SocketRecord
}

// WeakRefGone implements refs.WeakRefUser.WeakRefGone.
func (s *SocketRecordVFS1) WeakRefGone(context.Context) {
	s.k.extMu.Lock()
	s.k.sockets.Remove(s)
	s.k.extMu.Unlock()
}

// RecordSocket adds a socket to the system-wide socket table for tracking.
//
// Precondition: Caller must hold a reference to sock.
func (k *Kernel) RecordSocket(sock *fs.File) {
	k.extMu.Lock()
	id := k.nextSocketRecord
	k.nextSocketRecord++
	s := &SocketRecordVFS1{
		SocketRecord: SocketRecord{
			k:  k,
			ID: id,
		},
	}
	s.Sock = refs.NewWeakRef(sock, s)
	k.sockets.PushBack(s)
	k.extMu.Unlock()
}

// RecordSocketVFS2 adds a VFS2 socket to the system-wide socket table for
// tracking.
//
// Precondition: Caller must hold a reference to sock.
//
// Note that the socket table will not hold a reference on the
// vfs.FileDescription.
func (k *Kernel) RecordSocketVFS2(sock *vfs.FileDescription) {
	k.extMu.Lock()
	if _, ok := k.socketsVFS2[sock]; ok {
		panic(fmt.Sprintf("Socket %p added twice", sock))
	}
	id := k.nextSocketRecord
	k.nextSocketRecord++
	s := &SocketRecord{
		k:        k,
		ID:       id,
		SockVFS2: sock,
	}
	k.socketsVFS2[sock] = s
	k.extMu.Unlock()
}

// DeleteSocketVFS2 removes a VFS2 socket from the system-wide socket table.
func (k *Kernel) DeleteSocketVFS2(sock *vfs.FileDescription) {
	k.extMu.Lock()
	delete(k.socketsVFS2, sock)
	k.extMu.Unlock()
}

// ListSockets returns a snapshot of all sockets.
//
// Callers of ListSockets() in VFS2 should use SocketRecord.SockVFS2.TryIncRef()
// to get a reference on a socket in the table.
func (k *Kernel) ListSockets() []*SocketRecord {
	k.extMu.Lock()
	var socks []*SocketRecord
	if VFS2Enabled {
		for _, s := range k.socketsVFS2 {
			socks = append(socks, s)
		}
	} else {
		for s := k.sockets.Front(); s != nil; s = s.Next() {
			socks = append(socks, &s.SocketRecord)
		}
	}
	k.extMu.Unlock()
	return socks
}

// supervisorContext is a privileged context.
type supervisorContext struct {
	context.NoopSleeper
	log.Logger
	k *Kernel
}

// Value implements context.Context.
func (ctx supervisorContext) Value(key interface{}) interface{} {
	switch key {
	case CtxCanTrace:
		// The supervisor context can trace anything. (None of
		// supervisorContext's users are expected to invoke ptrace, but ptrace
		// permissions are required for certain file accesses.)
		return func(*Task, bool) bool { return true }
	case CtxKernel:
		return ctx.k
	case CtxPIDNamespace:
		return ctx.k.tasks.Root
	case CtxUTSNamespace:
		return ctx.k.rootUTSNamespace
	case CtxIPCNamespace:
		ipcns := ctx.k.rootIPCNamespace
		ipcns.IncRef()
		return ipcns
	case auth.CtxCredentials:
		// The supervisor context is global root.
		return auth.NewRootCredentials(ctx.k.rootUserNamespace)
	case fs.CtxRoot:
		if ctx.k.globalInit != nil {
			return ctx.k.globalInit.mounts.Root()
		}
		return nil
	case vfs.CtxRoot:
		if ctx.k.globalInit == nil {
			return vfs.VirtualDentry{}
		}
		root := ctx.k.GlobalInit().Leader().MountNamespaceVFS2().Root()
		root.IncRef()
		return root
	case vfs.CtxMountNamespace:
		if ctx.k.globalInit == nil {
			return nil
		}
		mntns := ctx.k.GlobalInit().Leader().MountNamespaceVFS2()
		mntns.IncRef()
		return mntns
	case fs.CtxDirentCacheLimiter:
		return ctx.k.DirentCacheLimiter
	case inet.CtxStack:
		return ctx.k.RootNetworkNamespace().Stack()
	case ktime.CtxRealtimeClock:
		return ctx.k.RealtimeClock()
	case limits.CtxLimits:
		// No limits apply.
		return limits.NewLimitSet()
	case pgalloc.CtxMemoryFile:
		return ctx.k.mf
	case pgalloc.CtxMemoryFileProvider:
		return ctx.k
	case platform.CtxPlatform:
		return ctx.k
	case uniqueid.CtxGlobalUniqueID:
		return ctx.k.UniqueID()
	case uniqueid.CtxGlobalUniqueIDProvider:
		return ctx.k
	case uniqueid.CtxInotifyCookie:
		return ctx.k.GenerateInotifyCookie()
	case unimpl.CtxEvents:
		return ctx.k
	default:
		return nil
	}
}

// Rate limits for the number of unimplemented syscall events.
const (
	unimplementedSyscallsMaxRate = 100  // events per second
	unimplementedSyscallBurst    = 1000 // events
)

// EmitUnimplementedEvent emits an UnimplementedSyscall event via the event
// channel.
func (k *Kernel) EmitUnimplementedEvent(ctx context.Context) {
	k.unimplementedSyscallEmitterOnce.Do(func() {
		k.unimplementedSyscallEmitter = eventchannel.RateLimitedEmitterFrom(eventchannel.DefaultEmitter, unimplementedSyscallsMaxRate, unimplementedSyscallBurst)
	})

	t := TaskFromContext(ctx)
	_, _ = k.unimplementedSyscallEmitter.Emit(&uspb.UnimplementedSyscall{
		Tid:       int32(t.ThreadID()),
		Registers: t.Arch().StateData().Proto(),
	})
}

// VFS returns the virtual filesystem for the kernel.
func (k *Kernel) VFS() *vfs.VirtualFilesystem {
	return &k.vfs
}

// SetHostMount sets the hostfs mount.
func (k *Kernel) SetHostMount(mnt *vfs.Mount) {
	if k.hostMount != nil {
		panic("Kernel.hostMount cannot be set more than once")
	}
	k.hostMount = mnt
}

// HostMount returns the hostfs mount.
func (k *Kernel) HostMount() *vfs.Mount {
	return k.hostMount
}

// PipeMount returns the pipefs mount.
func (k *Kernel) PipeMount() *vfs.Mount {
	return k.pipeMount
}

// ShmMount returns the tmpfs mount.
func (k *Kernel) ShmMount() *vfs.Mount {
	return k.shmMount
}

// SocketMount returns the sockfs mount.
func (k *Kernel) SocketMount() *vfs.Mount {
	return k.socketMount
}

// CgroupRegistry returns the cgroup registry.
func (k *Kernel) CgroupRegistry() *CgroupRegistry {
	return k.cgroupRegistry
}

// Release releases resources owned by k.
//
// Precondition: This should only be called after the kernel is fully
// initialized, e.g. after k.Start() has been called.
func (k *Kernel) Release() {
	ctx := k.SupervisorContext()
	if VFS2Enabled {
		k.hostMount.DecRef(ctx)
		k.pipeMount.DecRef(ctx)
		k.shmMount.DecRef(ctx)
		k.socketMount.DecRef(ctx)
		k.vfs.Release(ctx)
	}
	k.timekeeper.Destroy()
	k.vdso.Release(ctx)
}

// PopulateNewCgroupHierarchy moves all tasks into a newly created cgroup
// hierarchy.
//
// Precondition: root must be a new cgroup with no tasks. This implies the
// controllers for root are also new and currently manage no task, which in turn
// implies the new cgroup can be populated without migrating tasks between
// cgroups.
func (k *Kernel) PopulateNewCgroupHierarchy(root Cgroup) {
	k.tasks.mu.RLock()
	k.tasks.forEachTaskLocked(func(t *Task) {
		if t.exitState != TaskExitNone {
			return
		}
		t.mu.Lock()
		// A task can be in the cgroup if it has been created after the
		// cgroup hierarchy was registered.
		t.enterCgroupIfNotYetLocked(root)
		t.mu.Unlock()
	})
	k.tasks.mu.RUnlock()
}

// ReleaseCgroupHierarchy moves all tasks out of all cgroups belonging to the
// hierarchy with the provided id.  This is intended for use during hierarchy
// teardown, as otherwise the tasks would be orphaned w.r.t to some controllers.
func (k *Kernel) ReleaseCgroupHierarchy(hid uint32) {
	k.tasks.mu.RLock()
	k.tasks.forEachTaskLocked(func(t *Task) {
		if t.exitState != TaskExitNone {
			return
		}
		t.mu.Lock()
		for cg := range t.cgroups {
			if cg.HierarchyID() == hid {
				t.leaveCgroupLocked(cg)
			}
		}
		t.mu.Unlock()
	})
	k.tasks.mu.RUnlock()
}