summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/kernel/kcov.go
blob: 90ceb5ef56e0c2c857c4a3f3237ba9ddad4264b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package kernel

import (
	"fmt"
	"io"
	"sync"

	"gvisor.dev/gvisor/pkg/abi/linux"
	"gvisor.dev/gvisor/pkg/context"
	"gvisor.dev/gvisor/pkg/coverage"
	"gvisor.dev/gvisor/pkg/safemem"
	"gvisor.dev/gvisor/pkg/sentry/memmap"
	"gvisor.dev/gvisor/pkg/sentry/mm"
	"gvisor.dev/gvisor/pkg/sentry/pgalloc"
	"gvisor.dev/gvisor/pkg/sentry/usage"
	"gvisor.dev/gvisor/pkg/syserror"
	"gvisor.dev/gvisor/pkg/usermem"
)

// kcovAreaSizeMax is the maximum number of uint64 entries allowed in the kcov
// area. On Linux, the maximum is INT_MAX / 8.
const kcovAreaSizeMax = 10 * 1024 * 1024

// Kcov provides kernel coverage data to userspace through a memory-mapped
// region, as kcov does in Linux.
//
// To give the illusion that the data is always up to date, we update the shared
// memory every time before we return to userspace.
type Kcov struct {
	// mfp provides application memory. It is immutable after creation.
	mfp pgalloc.MemoryFileProvider

	// mu protects all of the fields below.
	mu sync.RWMutex

	// mode is the current kcov mode.
	mode uint8

	// size is the size of the mapping through which the kernel conveys coverage
	// information to userspace.
	size uint64

	// owningTask is the task that currently owns coverage data on the system. The
	// interface for kcov essentially requires that coverage is only going to a
	// single task. Note that kcov should only generate coverage data for the
	// owning task, but we currently generate global coverage.
	owningTask *Task

	// count is a locally cached version of the first uint64 in the kcov data,
	// which is the number of subsequent entries representing PCs.
	//
	// It is used with kcovInode.countBlock(), to copy in/out the first element of
	// the actual data in an efficient manner, avoid boilerplate, and prevent
	// accidental garbage escapes by the temporary counts.
	count uint64

	mappable *mm.SpecialMappable
}

// NewKcov creates and returns a Kcov instance.
func (k *Kernel) NewKcov() *Kcov {
	return &Kcov{
		mfp: k,
	}
}

var coveragePool = sync.Pool{
	New: func() interface{} {
		return make([]byte, 0)
	},
}

// TaskWork implements TaskWorker.TaskWork.
func (kcov *Kcov) TaskWork(t *Task) {
	kcov.mu.Lock()
	defer kcov.mu.Unlock()

	if kcov.mode != linux.KCOV_MODE_TRACE_PC {
		return
	}

	rw := &kcovReadWriter{
		mf: kcov.mfp.MemoryFile(),
		fr: kcov.mappable.FileRange(),
	}

	// Read in the PC count.
	if _, err := safemem.ReadFullToBlocks(rw, kcov.countBlock()); err != nil {
		panic(fmt.Sprintf("Internal error reading count from kcov area: %v", err))
	}

	rw.off = 8 * (1 + kcov.count)
	n := coverage.ConsumeCoverageData(&kcovIOWriter{rw})

	// Update the pc count, based on the number of entries written. Note that if
	// we reached the end of the kcov area, we may not have written everything in
	// output.
	kcov.count += uint64(n / 8)
	rw.off = 0
	if _, err := safemem.WriteFullFromBlocks(rw, kcov.countBlock()); err != nil {
		panic(fmt.Sprintf("Internal error writing count to kcov area: %v", err))
	}

	// Re-register for future work.
	t.RegisterWork(kcov)
}

// InitTrace performs the KCOV_INIT_TRACE ioctl.
func (kcov *Kcov) InitTrace(size uint64) error {
	kcov.mu.Lock()
	defer kcov.mu.Unlock()

	if kcov.mode != linux.KCOV_MODE_DISABLED {
		return syserror.EBUSY
	}

	// To simplify all the logic around mapping, we require that the length of the
	// shared region is a multiple of the system page size.
	if (8*size)&(usermem.PageSize-1) != 0 {
		return syserror.EINVAL
	}

	// We need space for at least two uint64s to hold current position and a
	// single PC.
	if size < 2 || size > kcovAreaSizeMax {
		return syserror.EINVAL
	}

	kcov.size = size
	kcov.mode = linux.KCOV_MODE_INIT
	return nil
}

// EnableTrace performs the KCOV_ENABLE_TRACE ioctl.
func (kcov *Kcov) EnableTrace(ctx context.Context, traceKind uint8) error {
	t := TaskFromContext(ctx)
	if t == nil {
		panic("kcovInode.EnableTrace() cannot be used outside of a task goroutine")
	}

	kcov.mu.Lock()
	defer kcov.mu.Unlock()

	// KCOV_ENABLE must be preceded by KCOV_INIT_TRACE and an mmap call.
	if kcov.mode != linux.KCOV_MODE_INIT || kcov.mappable == nil {
		return syserror.EINVAL
	}

	switch traceKind {
	case linux.KCOV_TRACE_PC:
		kcov.mode = linux.KCOV_MODE_TRACE_PC
	case linux.KCOV_TRACE_CMP:
		// We do not support KCOV_MODE_TRACE_CMP.
		return syserror.ENOTSUP
	default:
		return syserror.EINVAL
	}

	if kcov.owningTask != nil && kcov.owningTask != t {
		return syserror.EBUSY
	}

	kcov.owningTask = t
	t.SetKcov(kcov)
	t.RegisterWork(kcov)

	// Clear existing coverage data; the task expects to read only coverage data
	// from the time it is activated.
	coverage.ClearCoverageData()
	return nil
}

// DisableTrace performs the KCOV_DISABLE_TRACE ioctl.
func (kcov *Kcov) DisableTrace(ctx context.Context) error {
	kcov.mu.Lock()
	defer kcov.mu.Unlock()

	t := TaskFromContext(ctx)
	if t == nil {
		panic("kcovInode.EnableTrace() cannot be used outside of a task goroutine")
	}

	if t != kcov.owningTask {
		return syserror.EINVAL
	}
	kcov.mode = linux.KCOV_MODE_INIT
	kcov.owningTask = nil
	kcov.mappable = nil
	return nil
}

// Clear resets the mode and clears the owning task and memory mapping for kcov.
// It is called when the fd corresponding to kcov is closed. Note that the mode
// needs to be set so that the next call to kcov.TaskWork() will exit early.
func (kcov *Kcov) Clear() {
	kcov.mu.Lock()
	kcov.clearLocked()
	kcov.mu.Unlock()
}

func (kcov *Kcov) clearLocked() {
	kcov.mode = linux.KCOV_MODE_INIT
	kcov.owningTask = nil
	if kcov.mappable != nil {
		kcov.mappable = nil
	}
}

// OnTaskExit is called when the owning task exits. It is similar to
// kcov.Clear(), except the memory mapping is not cleared, so that the same
// mapping can be used in the future if kcov is enabled again by another task.
func (kcov *Kcov) OnTaskExit() {
	kcov.mu.Lock()
	kcov.mode = linux.KCOV_MODE_INIT
	kcov.owningTask = nil
	kcov.mu.Unlock()
}

// ConfigureMMap is called by the vfs.FileDescription for this kcov instance to
// implement vfs.FileDescription.ConfigureMMap.
func (kcov *Kcov) ConfigureMMap(ctx context.Context, opts *memmap.MMapOpts) error {
	kcov.mu.Lock()
	defer kcov.mu.Unlock()

	if kcov.mode != linux.KCOV_MODE_INIT {
		return syserror.EINVAL
	}

	if kcov.mappable == nil {
		// Set up the kcov area.
		fr, err := kcov.mfp.MemoryFile().Allocate(kcov.size*8, usage.Anonymous)
		if err != nil {
			return err
		}

		// Get the thread id for the mmap name.
		t := TaskFromContext(ctx)
		if t == nil {
			panic("ThreadFromContext returned nil")
		}
		// For convenience, a special mappable is used here. Note that these mappings
		// will look different under /proc/[pid]/maps than they do on Linux.
		kcov.mappable = mm.NewSpecialMappable(fmt.Sprintf("[kcov:%d]", t.ThreadID()), kcov.mfp, fr)
	}
	opts.Mappable = kcov.mappable
	opts.MappingIdentity = kcov.mappable
	return nil
}

// kcovReadWriter implements safemem.Reader and safemem.Writer.
type kcovReadWriter struct {
	off uint64
	mf  *pgalloc.MemoryFile
	fr  memmap.FileRange
}

// ReadToBlocks implements safemem.Reader.ReadToBlocks.
func (rw *kcovReadWriter) ReadToBlocks(dsts safemem.BlockSeq) (uint64, error) {
	if dsts.IsEmpty() {
		return 0, nil
	}

	// Limit the read to the kcov range and check for overflow.
	if rw.fr.Length() <= rw.off {
		return 0, io.EOF
	}
	start := rw.fr.Start + rw.off
	end := rw.fr.Start + rw.fr.Length()
	if rend := start + dsts.NumBytes(); rend < end {
		end = rend
	}

	// Get internal mappings.
	bs, err := rw.mf.MapInternal(memmap.FileRange{start, end}, usermem.Read)
	if err != nil {
		return 0, err
	}

	// Copy from internal mappings.
	n, err := safemem.CopySeq(dsts, bs)
	rw.off += n
	return n, err
}

// WriteFromBlocks implements safemem.Writer.WriteFromBlocks.
func (rw *kcovReadWriter) WriteFromBlocks(srcs safemem.BlockSeq) (uint64, error) {
	if srcs.IsEmpty() {
		return 0, nil
	}

	// Limit the write to the kcov area and check for overflow.
	if rw.fr.Length() <= rw.off {
		return 0, io.EOF
	}
	start := rw.fr.Start + rw.off
	end := rw.fr.Start + rw.fr.Length()
	if wend := start + srcs.NumBytes(); wend < end {
		end = wend
	}

	// Get internal mapping.
	bs, err := rw.mf.MapInternal(memmap.FileRange{start, end}, usermem.Write)
	if err != nil {
		return 0, err
	}

	// Copy to internal mapping.
	n, err := safemem.CopySeq(bs, srcs)
	rw.off += n
	return n, err
}

// kcovIOWriter implements io.Writer as a basic wrapper over kcovReadWriter.
type kcovIOWriter struct {
	rw *kcovReadWriter
}

// Write implements io.Writer.Write.
func (w *kcovIOWriter) Write(p []byte) (int, error) {
	bs := safemem.BlockSeqOf(safemem.BlockFromSafeSlice(p))
	n, err := safemem.WriteFullFromBlocks(w.rw, bs)
	return int(n), err
}