1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
|
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package kernfs provides the tools to implement inode-based filesystems.
// Kernfs has two main features:
//
// 1. The Inode interface, which maps VFS2's path-based filesystem operations to
// specific filesystem nodes. Kernfs uses the Inode interface to provide a
// blanket implementation for the vfs.FilesystemImpl. Kernfs also serves as
// the synchronization mechanism for all filesystem operations by holding a
// filesystem-wide lock across all operations.
//
// 2. Various utility types which provide generic implementations for various
// parts of the Inode and vfs.FileDescription interfaces. Client filesystems
// based on kernfs can embed the appropriate set of these to avoid having to
// reimplement common filesystem operations. See inode_impl_util.go and
// fd_impl_util.go.
//
// Reference Model:
//
// Kernfs dentries represents named pointers to inodes. Kernfs is solely
// reponsible for maintaining and modifying its dentry tree; inode
// implementations can not access the tree. Dentries and inodes have
// independent lifetimes and reference counts. A child dentry unconditionally
// holds a reference on its parent directory's dentry. A dentry also holds a
// reference on the inode it points to (although that might not be the only
// reference on the inode). Due to this inodes can outlive the dentries that
// point to them. Multiple dentries can point to the same inode (for example,
// in the case of hardlinks). File descriptors hold a reference to the dentry
// they're opened on.
//
// Dentries are guaranteed to exist while holding Filesystem.mu for
// reading. Dropping dentries require holding Filesystem.mu for writing. To
// queue dentries for destruction from a read critical section, see
// Filesystem.deferDecRef.
//
// Lock ordering:
//
// kernfs.Filesystem.mu
// kernfs.Dentry.dirMu
// vfs.VirtualFilesystem.mountMu
// vfs.Dentry.mu
// (inode implementation locks, if any)
// kernfs.Filesystem.droppedDentriesMu
package kernfs
import (
"fmt"
"sync/atomic"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
"gvisor.dev/gvisor/pkg/sentry/vfs"
"gvisor.dev/gvisor/pkg/sync"
)
// Filesystem mostly implements vfs.FilesystemImpl for a generic in-memory
// filesystem. Concrete implementations are expected to embed this in their own
// Filesystem type.
//
// +stateify savable
type Filesystem struct {
vfsfs vfs.Filesystem
droppedDentriesMu sync.Mutex `state:"nosave"`
// droppedDentries is a list of dentries waiting to be DecRef()ed. This is
// used to defer dentry destruction until mu can be acquired for
// writing. Protected by droppedDentriesMu.
droppedDentries []*Dentry
// mu synchronizes the lifetime of Dentries on this filesystem. Holding it
// for reading guarantees continued existence of any resolved dentries, but
// the dentry tree may be modified.
//
// Kernfs dentries can only be DecRef()ed while holding mu for writing. For
// example:
//
// fs.mu.Lock()
// defer fs.mu.Unlock()
// ...
// dentry1.DecRef()
// defer dentry2.DecRef() // Ok, will run before Unlock.
//
// If discarding dentries in a read context, use Filesystem.deferDecRef. For
// example:
//
// fs.mu.RLock()
// defer fs.processDeferredDecRefs()
// defer fs.mu.RUnlock()
// ...
// fs.deferDecRef(dentry)
mu sync.RWMutex `state:"nosave"`
// nextInoMinusOne is used to to allocate inode numbers on this
// filesystem. Must be accessed by atomic operations.
nextInoMinusOne uint64
}
// deferDecRef defers dropping a dentry ref until the next call to
// processDeferredDecRefs{,Locked}. See comment on Filesystem.mu.
// This may be called while Filesystem.mu or Dentry.dirMu is locked.
func (fs *Filesystem) deferDecRef(d *Dentry) {
fs.droppedDentriesMu.Lock()
fs.droppedDentries = append(fs.droppedDentries, d)
fs.droppedDentriesMu.Unlock()
}
// processDeferredDecRefs calls vfs.Dentry.DecRef on all dentries in the
// droppedDentries list. See comment on Filesystem.mu.
//
// Precondition: Filesystem.mu or Dentry.dirMu must NOT be locked.
func (fs *Filesystem) processDeferredDecRefs(ctx context.Context) {
fs.droppedDentriesMu.Lock()
for _, d := range fs.droppedDentries {
// Defer the DecRef call so that we are not holding droppedDentriesMu
// when DecRef is called.
defer d.DecRef(ctx)
}
fs.droppedDentries = fs.droppedDentries[:0] // Keep slice memory for reuse.
fs.droppedDentriesMu.Unlock()
}
// VFSFilesystem returns the generic vfs filesystem object.
func (fs *Filesystem) VFSFilesystem() *vfs.Filesystem {
return &fs.vfsfs
}
// NextIno allocates a new inode number on this filesystem.
func (fs *Filesystem) NextIno() uint64 {
return atomic.AddUint64(&fs.nextInoMinusOne, 1)
}
// These consts are used in the Dentry.flags field.
const (
// Dentry points to a directory inode.
dflagsIsDir = 1 << iota
// Dentry points to a symlink inode.
dflagsIsSymlink
)
// Dentry implements vfs.DentryImpl.
//
// A kernfs dentry is similar to a dentry in a traditional filesystem: it's a
// named reference to an inode. A dentry generally lives as long as it's part of
// a mounted filesystem tree. Kernfs drops dentries once all references to them
// are dropped. Dentries hold a single reference to the inode they point
// to, and child dentries hold a reference on their parent.
//
// Must be initialized by Init prior to first use.
//
// +stateify savable
type Dentry struct {
vfsd vfs.Dentry
DentryRefs
// fs is the owning filesystem. fs is immutable.
fs *Filesystem
// flags caches useful information about the dentry from the inode. See the
// dflags* consts above. Must be accessed by atomic ops.
flags uint32
parent *Dentry
name string
// dirMu protects children and the names of child Dentries.
//
// Note that holding fs.mu for writing is not sufficient;
// revalidateChildLocked(), which is a very hot path, may modify children with
// fs.mu acquired for reading only.
dirMu sync.Mutex `state:"nosave"`
children map[string]*Dentry
inode Inode
}
// Init initializes this dentry.
//
// Precondition: Caller must hold a reference on inode.
//
// Postcondition: Caller's reference on inode is transferred to the dentry.
func (d *Dentry) Init(fs *Filesystem, inode Inode) {
d.vfsd.Init(d)
d.fs = fs
d.inode = inode
ftype := inode.Mode().FileType()
if ftype == linux.ModeDirectory {
d.flags |= dflagsIsDir
}
if ftype == linux.ModeSymlink {
d.flags |= dflagsIsSymlink
}
d.EnableLeakCheck()
}
// VFSDentry returns the generic vfs dentry for this kernfs dentry.
func (d *Dentry) VFSDentry() *vfs.Dentry {
return &d.vfsd
}
// isDir checks whether the dentry points to a directory inode.
func (d *Dentry) isDir() bool {
return atomic.LoadUint32(&d.flags)&dflagsIsDir != 0
}
// isSymlink checks whether the dentry points to a symlink inode.
func (d *Dentry) isSymlink() bool {
return atomic.LoadUint32(&d.flags)&dflagsIsSymlink != 0
}
// DecRef implements vfs.DentryImpl.DecRef.
func (d *Dentry) DecRef(ctx context.Context) {
decRefParent := false
d.fs.mu.Lock()
d.DentryRefs.DecRef(func() {
d.inode.DecRef(ctx) // IncRef from Init.
d.inode = nil
if d.parent != nil {
// We will DecRef d.parent once all locks are dropped.
decRefParent = true
d.parent.dirMu.Lock()
// Remove d from parent.children. It might already have been
// removed due to invalidation.
if _, ok := d.parent.children[d.name]; ok {
delete(d.parent.children, d.name)
d.fs.VFSFilesystem().VirtualFilesystem().InvalidateDentry(ctx, d.VFSDentry())
}
d.parent.dirMu.Unlock()
}
})
d.fs.mu.Unlock()
if decRefParent {
d.parent.DecRef(ctx) // IncRef from Dentry.insertChild.
}
}
// InotifyWithParent implements vfs.DentryImpl.InotifyWithParent.
//
// Although Linux technically supports inotify on pseudo filesystems (inotify
// is implemented at the vfs layer), it is not particularly useful. It is left
// unimplemented until someone actually needs it.
func (d *Dentry) InotifyWithParent(ctx context.Context, events, cookie uint32, et vfs.EventType) {}
// Watches implements vfs.DentryImpl.Watches.
func (d *Dentry) Watches() *vfs.Watches {
return nil
}
// OnZeroWatches implements vfs.Dentry.OnZeroWatches.
func (d *Dentry) OnZeroWatches(context.Context) {}
// insertChild inserts child into the vfs dentry cache with the given name under
// this dentry. This does not update the directory inode, so calling this on its
// own isn't sufficient to insert a child into a directory.
//
// Precondition: d must represent a directory inode.
func (d *Dentry) insertChild(name string, child *Dentry) {
d.dirMu.Lock()
d.insertChildLocked(name, child)
d.dirMu.Unlock()
}
// insertChildLocked is equivalent to insertChild, with additional
// preconditions.
//
// Preconditions:
// * d must represent a directory inode.
// * d.dirMu must be locked.
func (d *Dentry) insertChildLocked(name string, child *Dentry) {
if !d.isDir() {
panic(fmt.Sprintf("insertChildLocked called on non-directory Dentry: %+v.", d))
}
d.IncRef() // DecRef in child's Dentry.destroy.
child.parent = d
child.name = name
if d.children == nil {
d.children = make(map[string]*Dentry)
}
d.children[name] = child
}
// Inode returns the dentry's inode.
func (d *Dentry) Inode() Inode {
return d.inode
}
// The Inode interface maps filesystem-level operations that operate on paths to
// equivalent operations on specific filesystem nodes.
//
// The interface methods are groups into logical categories as sub interfaces
// below. Generally, an implementation for each sub interface can be provided by
// embedding an appropriate type from inode_impl_utils.go. The sub interfaces
// are purely organizational. Methods declared directly in the main interface
// have no generic implementations, and should be explicitly provided by the
// client filesystem.
//
// Generally, implementations are not responsible for tasks that are common to
// all filesystems. These include:
//
// - Checking that dentries passed to methods are of the appropriate file type.
// - Checking permissions.
//
// Specific responsibilities of implementations are documented below.
type Inode interface {
// Methods related to reference counting. A generic implementation is
// provided by InodeNoopRefCount. These methods are generally called by the
// equivalent Dentry methods.
inodeRefs
// Methods related to node metadata. A generic implementation is provided by
// InodeAttrs. Note that a concrete filesystem using kernfs is responsible for
// managing link counts.
inodeMetadata
// Method for inodes that represent symlink. InodeNotSymlink provides a
// blanket implementation for all non-symlink inodes.
inodeSymlink
// Method for inodes that represent directories. InodeNotDirectory provides
// a blanket implementation for all non-directory inodes.
inodeDirectory
// Open creates a file description for the filesystem object represented by
// this inode. The returned file description should hold a reference on the
// dentry for its lifetime.
//
// Precondition: rp.Done(). vfsd.Impl() must be the kernfs Dentry containing
// the inode on which Open() is being called.
Open(ctx context.Context, rp *vfs.ResolvingPath, d *Dentry, opts vfs.OpenOptions) (*vfs.FileDescription, error)
// StatFS returns filesystem statistics for the client filesystem. This
// corresponds to vfs.FilesystemImpl.StatFSAt. If the client filesystem
// doesn't support statfs(2), this should return ENOSYS.
StatFS(ctx context.Context, fs *vfs.Filesystem) (linux.Statfs, error)
// Keep indicates whether the dentry created after Inode.Lookup should be
// kept in the kernfs dentry tree.
Keep() bool
// Valid should return true if this inode is still valid, or needs to
// be resolved again by a call to Lookup.
Valid(ctx context.Context) bool
}
type inodeRefs interface {
IncRef()
DecRef(ctx context.Context)
TryIncRef() bool
}
type inodeMetadata interface {
// CheckPermissions checks that creds may access this inode for the
// requested access type, per the the rules of
// fs/namei.c:generic_permission().
CheckPermissions(ctx context.Context, creds *auth.Credentials, ats vfs.AccessTypes) error
// Mode returns the (struct stat)::st_mode value for this inode. This is
// separated from Stat for performance.
Mode() linux.FileMode
// Stat returns the metadata for this inode. This corresponds to
// vfs.FilesystemImpl.StatAt.
Stat(ctx context.Context, fs *vfs.Filesystem, opts vfs.StatOptions) (linux.Statx, error)
// SetStat updates the metadata for this inode. This corresponds to
// vfs.FilesystemImpl.SetStatAt. Implementations are responsible for checking
// if the operation can be performed (see vfs.CheckSetStat() for common
// checks).
SetStat(ctx context.Context, fs *vfs.Filesystem, creds *auth.Credentials, opts vfs.SetStatOptions) error
}
// Precondition: All methods in this interface may only be called on directory
// inodes.
type inodeDirectory interface {
// The New{File,Dir,Node,Link,Symlink} methods below should return a new inode
// that will be hashed into the dentry tree.
//
// These inode constructors are inode-level operations rather than
// filesystem-level operations to allow client filesystems to mix different
// implementations based on the new node's location in the
// filesystem.
// HasChildren returns true if the directory inode has any children.
HasChildren() bool
// NewFile creates a new regular file inode.
NewFile(ctx context.Context, name string, opts vfs.OpenOptions) (Inode, error)
// NewDir creates a new directory inode.
NewDir(ctx context.Context, name string, opts vfs.MkdirOptions) (Inode, error)
// NewLink creates a new hardlink to a specified inode in this
// directory. Implementations should create a new kernfs Dentry pointing to
// target, and update target's link count.
NewLink(ctx context.Context, name string, target Inode) (Inode, error)
// NewSymlink creates a new symbolic link inode.
NewSymlink(ctx context.Context, name, target string) (Inode, error)
// NewNode creates a new filesystem node for a mknod syscall.
NewNode(ctx context.Context, name string, opts vfs.MknodOptions) (Inode, error)
// Unlink removes a child dentry from this directory inode.
Unlink(ctx context.Context, name string, child Inode) error
// RmDir removes an empty child directory from this directory
// inode. Implementations must update the parent directory's link count,
// if required. Implementations are not responsible for checking that child
// is a directory, checking for an empty directory.
RmDir(ctx context.Context, name string, child Inode) error
// Rename is called on the source directory containing an inode being
// renamed. child should point to the resolved child in the source
// directory.
//
// Precondition: Caller must serialize concurrent calls to Rename.
Rename(ctx context.Context, oldname, newname string, child, dstDir Inode) error
// Lookup should return an appropriate inode if name should resolve to a
// child of this directory inode. This gives the directory an opportunity
// on every lookup to resolve additional entries. This is only called when
// the inode is a directory.
//
// The child returned by Lookup will be hashed into the VFS dentry tree,
// atleast for the duration of the current FS operation.
//
// Lookup must return the child with an extra reference whose ownership is
// transferred to the dentry that is created to point to that inode. If
// Inode.Keep returns false, that new dentry will be dropped at the end of
// the current filesystem operation (before returning back to the VFS
// layer) if no other ref is picked on that dentry. If Inode.Keep returns
// true, then the dentry will be cached into the dentry tree until it is
// Unlink'd or RmDir'd.
Lookup(ctx context.Context, name string) (Inode, error)
// IterDirents is used to iterate over dynamically created entries. It invokes
// cb on each entry in the directory represented by the Inode.
// 'offset' is the offset for the entire IterDirents call, which may include
// results from the caller (e.g. "." and ".."). 'relOffset' is the offset
// inside the entries returned by this IterDirents invocation. In other words,
// 'offset' should be used to calculate each vfs.Dirent.NextOff as well as
// the return value, while 'relOffset' is the place to start iteration.
IterDirents(ctx context.Context, callback vfs.IterDirentsCallback, offset, relOffset int64) (newOffset int64, err error)
}
type inodeSymlink interface {
// Readlink returns the target of a symbolic link. If an inode is not a
// symlink, the implementation should return EINVAL.
Readlink(ctx context.Context, mnt *vfs.Mount) (string, error)
// Getlink returns the target of a symbolic link, as used by path
// resolution:
//
// - If the inode is a "magic link" (a link whose target is most accurately
// represented as a VirtualDentry), Getlink returns (ok VirtualDentry, "",
// nil). A reference is taken on the returned VirtualDentry.
//
// - If the inode is an ordinary symlink, Getlink returns (zero-value
// VirtualDentry, symlink target, nil).
//
// - If the inode is not a symlink, Getlink returns (zero-value
// VirtualDentry, "", EINVAL).
Getlink(ctx context.Context, mnt *vfs.Mount) (vfs.VirtualDentry, string, error)
}
|