1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
|
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package kernfs provides the tools to implement inode-based filesystems.
// Kernfs has two main features:
//
// 1. The Inode interface, which maps VFS2's path-based filesystem operations to
// specific filesystem nodes. Kernfs uses the Inode interface to provide a
// blanket implementation for the vfs.FilesystemImpl. Kernfs also serves as
// the synchronization mechanism for all filesystem operations by holding a
// filesystem-wide lock across all operations.
//
// 2. Various utility types which provide generic implementations for various
// parts of the Inode and vfs.FileDescription interfaces. Client filesystems
// based on kernfs can embed the appropriate set of these to avoid having to
// reimplement common filesystem operations. See inode_impl_util.go and
// fd_impl_util.go.
//
// Reference Model:
//
// Kernfs dentries represents named pointers to inodes. Kernfs is solely
// reponsible for maintaining and modifying its dentry tree; inode
// implementations can not access the tree. Dentries and inodes have
// independent lifetimes and reference counts. A child dentry unconditionally
// holds a reference on its parent directory's dentry. A dentry also holds a
// reference on the inode it points to (although that might not be the only
// reference on the inode). Due to this inodes can outlive the dentries that
// point to them. Multiple dentries can point to the same inode (for example,
// in the case of hardlinks). File descriptors hold a reference to the dentry
// they're opened on.
//
// Dentries are guaranteed to exist while holding Filesystem.mu for
// reading. Dropping dentries require holding Filesystem.mu for writing. To
// queue dentries for destruction from a read critical section, see
// Filesystem.deferDecRef.
//
// Lock ordering:
//
// kernfs.Filesystem.mu
// kernfs.Dentry.dirMu
// vfs.VirtualFilesystem.mountMu
// vfs.Dentry.mu
// (inode implementation locks, if any)
// kernfs.Filesystem.deferredDecRefsMu
package kernfs
import (
"fmt"
"sync/atomic"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/fspath"
"gvisor.dev/gvisor/pkg/refsvfs2"
"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
"gvisor.dev/gvisor/pkg/sentry/vfs"
"gvisor.dev/gvisor/pkg/sync"
)
// Filesystem mostly implements vfs.FilesystemImpl for a generic in-memory
// filesystem. Concrete implementations are expected to embed this in their own
// Filesystem type.
//
// +stateify savable
type Filesystem struct {
vfsfs vfs.Filesystem
deferredDecRefsMu sync.Mutex `state:"nosave"`
// deferredDecRefs is a list of dentries waiting to be DecRef()ed. This is
// used to defer dentry destruction until mu can be acquired for
// writing. Protected by deferredDecRefsMu.
deferredDecRefs []refsvfs2.RefCounter
// mu synchronizes the lifetime of Dentries on this filesystem. Holding it
// for reading guarantees continued existence of any resolved dentries, but
// the dentry tree may be modified.
//
// Kernfs dentries can only be DecRef()ed while holding mu for writing. For
// example:
//
// fs.mu.Lock()
// defer fs.mu.Unlock()
// ...
// dentry1.DecRef()
// defer dentry2.DecRef() // Ok, will run before Unlock.
//
// If discarding dentries in a read context, use Filesystem.deferDecRef. For
// example:
//
// fs.mu.RLock()
// defer fs.processDeferredDecRefs()
// defer fs.mu.RUnlock()
// ...
// fs.deferDecRef(dentry)
mu sync.RWMutex `state:"nosave"`
// nextInoMinusOne is used to to allocate inode numbers on this
// filesystem. Must be accessed by atomic operations.
nextInoMinusOne uint64
// cachedDentries contains all dentries with 0 references. (Due to race
// conditions, it may also contain dentries with non-zero references.)
// cachedDentriesLen is the number of dentries in cachedDentries. These
// fields are protected by mu.
cachedDentries dentryList
cachedDentriesLen uint64
// MaxCachedDentries is the maximum size of cachedDentries. If not set,
// defaults to 0 and kernfs does not cache any dentries. This is immutable.
MaxCachedDentries uint64
// root is the root dentry of this filesystem. Note that root may be nil for
// filesystems on a disconnected mount without a root (e.g. pipefs, sockfs,
// hostfs). Filesystem holds an extra reference on root to prevent it from
// being destroyed prematurely. This is immutable.
root *Dentry
}
// deferDecRef defers dropping a dentry ref until the next call to
// processDeferredDecRefs{,Locked}. See comment on Filesystem.mu.
// This may be called while Filesystem.mu or Dentry.dirMu is locked.
func (fs *Filesystem) deferDecRef(d refsvfs2.RefCounter) {
fs.deferredDecRefsMu.Lock()
fs.deferredDecRefs = append(fs.deferredDecRefs, d)
fs.deferredDecRefsMu.Unlock()
}
// SafeDecRefFD safely DecRef the FileDescription making sure DecRef is deferred
// in case Filesystem.mu is held. See comment on Filesystem.mu.
func (fs *Filesystem) SafeDecRefFD(ctx context.Context, fd *vfs.FileDescription) {
if d, ok := fd.Dentry().Impl().(*Dentry); ok && d.fs == fs {
// Only defer if dentry belongs to this filesystem, since locks cannot cross
// filesystems.
fs.deferDecRef(fd)
return
}
fd.DecRef(ctx)
}
// SafeDecRef safely DecRef the virtual dentry making sure DecRef is deferred
// in case Filesystem.mu is held. See comment on Filesystem.mu.
func (fs *Filesystem) SafeDecRef(ctx context.Context, vd vfs.VirtualDentry) {
if d, ok := vd.Dentry().Impl().(*Dentry); ok && d.fs == fs {
// Only defer if dentry belongs to this filesystem, since locks cannot cross
// filesystems.
fs.deferDecRef(&vd)
return
}
vd.DecRef(ctx)
}
// processDeferredDecRefs calls vfs.Dentry.DecRef on all dentries in the
// deferredDecRefs list. See comment on Filesystem.mu.
//
// Precondition: Filesystem.mu or Dentry.dirMu must NOT be locked.
func (fs *Filesystem) processDeferredDecRefs(ctx context.Context) {
fs.deferredDecRefsMu.Lock()
for _, d := range fs.deferredDecRefs {
// Defer the DecRef call so that we are not holding deferredDecRefsMu
// when DecRef is called.
defer d.DecRef(ctx)
}
fs.deferredDecRefs = fs.deferredDecRefs[:0] // Keep slice memory for reuse.
fs.deferredDecRefsMu.Unlock()
}
// VFSFilesystem returns the generic vfs filesystem object.
func (fs *Filesystem) VFSFilesystem() *vfs.Filesystem {
return &fs.vfsfs
}
// NextIno allocates a new inode number on this filesystem.
func (fs *Filesystem) NextIno() uint64 {
return atomic.AddUint64(&fs.nextInoMinusOne, 1)
}
// These consts are used in the Dentry.flags field.
const (
// Dentry points to a directory inode.
dflagsIsDir = 1 << iota
// Dentry points to a symlink inode.
dflagsIsSymlink
)
// Dentry implements vfs.DentryImpl.
//
// A kernfs dentry is similar to a dentry in a traditional filesystem: it's a
// named reference to an inode. A dentry generally lives as long as it's part of
// a mounted filesystem tree. Kernfs drops dentries once all references to them
// are dropped. Dentries hold a single reference to the inode they point
// to, and child dentries hold a reference on their parent.
//
// Must be initialized by Init prior to first use.
//
// +stateify savable
type Dentry struct {
vfsd vfs.Dentry
// refs is the reference count. When refs reaches 0, the dentry may be
// added to the cache or destroyed. If refs == -1, the dentry has already
// been destroyed. refs are allowed to go to 0 and increase again. refs is
// accessed using atomic memory operations.
refs int64
// fs is the owning filesystem. fs is immutable.
fs *Filesystem
// flags caches useful information about the dentry from the inode. See the
// dflags* consts above. Must be accessed by atomic ops.
flags uint32
parent *Dentry
name string
// If cached is true, dentryEntry links dentry into
// Filesystem.cachedDentries. cached and dentryEntry are protected by
// Filesystem.mu.
cached bool
dentryEntry
// dirMu protects children and the names of child Dentries.
//
// Note that holding fs.mu for writing is not sufficient;
// revalidateChildLocked(), which is a very hot path, may modify children with
// fs.mu acquired for reading only.
dirMu sync.Mutex `state:"nosave"`
children map[string]*Dentry
inode Inode
}
// IncRef implements vfs.DentryImpl.IncRef.
func (d *Dentry) IncRef() {
// d.refs may be 0 if d.fs.mu is locked, which serializes against
// d.cacheLocked().
r := atomic.AddInt64(&d.refs, 1)
if d.LogRefs() {
refsvfs2.LogIncRef(d, r)
}
}
// TryIncRef implements vfs.DentryImpl.TryIncRef.
func (d *Dentry) TryIncRef() bool {
for {
r := atomic.LoadInt64(&d.refs)
if r <= 0 {
return false
}
if atomic.CompareAndSwapInt64(&d.refs, r, r+1) {
if d.LogRefs() {
refsvfs2.LogTryIncRef(d, r+1)
}
return true
}
}
}
// DecRef implements vfs.DentryImpl.DecRef.
func (d *Dentry) DecRef(ctx context.Context) {
r := atomic.AddInt64(&d.refs, -1)
if d.LogRefs() {
refsvfs2.LogDecRef(d, r)
}
if r == 0 {
d.fs.mu.Lock()
d.cacheLocked(ctx)
d.fs.mu.Unlock()
} else if r < 0 {
panic("kernfs.Dentry.DecRef() called without holding a reference")
}
}
func (d *Dentry) decRefLocked(ctx context.Context) {
r := atomic.AddInt64(&d.refs, -1)
if d.LogRefs() {
refsvfs2.LogDecRef(d, r)
}
if r == 0 {
d.cacheLocked(ctx)
} else if r < 0 {
panic("kernfs.Dentry.DecRef() called without holding a reference")
}
}
// cacheLocked should be called after d's reference count becomes 0. The ref
// count check may happen before acquiring d.fs.mu so there might be a race
// condition where the ref count is increased again by the time the caller
// acquires d.fs.mu. This race is handled.
// Only reachable dentries are added to the cache. However, a dentry might
// become unreachable *while* it is in the cache due to invalidation.
//
// Preconditions: d.fs.mu must be locked for writing.
func (d *Dentry) cacheLocked(ctx context.Context) {
// Dentries with a non-zero reference count must be retained. (The only way
// to obtain a reference on a dentry with zero references is via path
// resolution, which requires d.fs.mu, so if d.refs is zero then it will
// remain zero while we hold d.fs.mu for writing.)
refs := atomic.LoadInt64(&d.refs)
if refs == -1 {
// Dentry has already been destroyed.
return
}
if refs > 0 {
if d.cached {
d.fs.cachedDentries.Remove(d)
d.fs.cachedDentriesLen--
d.cached = false
}
return
}
// If the dentry is deleted and invalidated or has no parent, then it is no
// longer reachable by path resolution and should be dropped immediately
// because it has zero references.
// Note that a dentry may not always have a parent; for example magic links
// as described in Inode.Getlink.
if isDead := d.VFSDentry().IsDead(); isDead || d.parent == nil {
if !isDead {
d.fs.vfsfs.VirtualFilesystem().InvalidateDentry(ctx, d.VFSDentry())
}
if d.cached {
d.fs.cachedDentries.Remove(d)
d.fs.cachedDentriesLen--
d.cached = false
}
d.destroyLocked(ctx)
return
}
// If d is already cached, just move it to the front of the LRU.
if d.cached {
d.fs.cachedDentries.Remove(d)
d.fs.cachedDentries.PushFront(d)
return
}
// Cache the dentry, then evict the least recently used cached dentry if
// the cache becomes over-full.
d.fs.cachedDentries.PushFront(d)
d.fs.cachedDentriesLen++
d.cached = true
if d.fs.cachedDentriesLen <= d.fs.MaxCachedDentries {
return
}
d.fs.evictCachedDentryLocked(ctx)
// Whether or not victim was destroyed, we brought fs.cachedDentriesLen
// back down to fs.opts.maxCachedDentries, so we don't loop.
}
// Preconditions:
// * fs.mu must be locked for writing.
// * fs.cachedDentriesLen != 0.
func (fs *Filesystem) evictCachedDentryLocked(ctx context.Context) {
// Evict the least recently used dentry because cache size is greater than
// max cache size (configured on mount).
victim := fs.cachedDentries.Back()
fs.cachedDentries.Remove(victim)
fs.cachedDentriesLen--
victim.cached = false
// victim.refs may have become non-zero from an earlier path resolution
// after it was inserted into fs.cachedDentries.
if atomic.LoadInt64(&victim.refs) == 0 {
if !victim.vfsd.IsDead() {
victim.parent.dirMu.Lock()
// Note that victim can't be a mount point (in any mount
// namespace), since VFS holds references on mount points.
fs.vfsfs.VirtualFilesystem().InvalidateDentry(ctx, victim.VFSDentry())
delete(victim.parent.children, victim.name)
victim.parent.dirMu.Unlock()
}
victim.destroyLocked(ctx)
}
// Whether or not victim was destroyed, we brought fs.cachedDentriesLen
// back down to fs.MaxCachedDentries, so we don't loop.
}
// destroyLocked destroys the dentry.
//
// Preconditions:
// * d.fs.mu must be locked for writing.
// * d.refs == 0.
// * d should have been removed from d.parent.children, i.e. d is not reachable
// by path traversal.
// * d.vfsd.IsDead() is true.
func (d *Dentry) destroyLocked(ctx context.Context) {
refs := atomic.LoadInt64(&d.refs)
switch refs {
case 0:
// Mark the dentry destroyed.
atomic.StoreInt64(&d.refs, -1)
case -1:
panic("dentry.destroyLocked() called on already destroyed dentry")
default:
panic("dentry.destroyLocked() called with references on the dentry")
}
d.inode.DecRef(ctx) // IncRef from Init.
d.inode = nil
if d.parent != nil {
d.parent.decRefLocked(ctx)
}
refsvfs2.Unregister(d)
}
// RefType implements refsvfs2.CheckedObject.Type.
func (d *Dentry) RefType() string {
return "kernfs.Dentry"
}
// LeakMessage implements refsvfs2.CheckedObject.LeakMessage.
func (d *Dentry) LeakMessage() string {
return fmt.Sprintf("[kernfs.Dentry %p] reference count of %d instead of -1", d, atomic.LoadInt64(&d.refs))
}
// LogRefs implements refsvfs2.CheckedObject.LogRefs.
//
// This should only be set to true for debugging purposes, as it can generate an
// extremely large amount of output and drastically degrade performance.
func (d *Dentry) LogRefs() bool {
return false
}
// InitRoot initializes this dentry as the root of the filesystem.
//
// Precondition: Caller must hold a reference on inode.
//
// Postcondition: Caller's reference on inode is transferred to the dentry.
func (d *Dentry) InitRoot(fs *Filesystem, inode Inode) {
d.Init(fs, inode)
fs.root = d
// Hold an extra reference on the root dentry. It is held by fs to prevent the
// root from being "cached" and subsequently evicted.
d.IncRef()
}
// Init initializes this dentry.
//
// Precondition: Caller must hold a reference on inode.
//
// Postcondition: Caller's reference on inode is transferred to the dentry.
func (d *Dentry) Init(fs *Filesystem, inode Inode) {
d.vfsd.Init(d)
d.fs = fs
d.inode = inode
atomic.StoreInt64(&d.refs, 1)
ftype := inode.Mode().FileType()
if ftype == linux.ModeDirectory {
d.flags |= dflagsIsDir
}
if ftype == linux.ModeSymlink {
d.flags |= dflagsIsSymlink
}
refsvfs2.Register(d)
}
// VFSDentry returns the generic vfs dentry for this kernfs dentry.
func (d *Dentry) VFSDentry() *vfs.Dentry {
return &d.vfsd
}
// isDir checks whether the dentry points to a directory inode.
func (d *Dentry) isDir() bool {
return atomic.LoadUint32(&d.flags)&dflagsIsDir != 0
}
// isSymlink checks whether the dentry points to a symlink inode.
func (d *Dentry) isSymlink() bool {
return atomic.LoadUint32(&d.flags)&dflagsIsSymlink != 0
}
// InotifyWithParent implements vfs.DentryImpl.InotifyWithParent.
//
// Although Linux technically supports inotify on pseudo filesystems (inotify
// is implemented at the vfs layer), it is not particularly useful. It is left
// unimplemented until someone actually needs it.
func (d *Dentry) InotifyWithParent(ctx context.Context, events, cookie uint32, et vfs.EventType) {}
// Watches implements vfs.DentryImpl.Watches.
func (d *Dentry) Watches() *vfs.Watches {
return nil
}
// OnZeroWatches implements vfs.Dentry.OnZeroWatches.
func (d *Dentry) OnZeroWatches(context.Context) {}
// insertChild inserts child into the vfs dentry cache with the given name under
// this dentry. This does not update the directory inode, so calling this on its
// own isn't sufficient to insert a child into a directory.
//
// Preconditions:
// * d must represent a directory inode.
// * d.fs.mu must be locked for at least reading.
func (d *Dentry) insertChild(name string, child *Dentry) {
d.dirMu.Lock()
d.insertChildLocked(name, child)
d.dirMu.Unlock()
}
// insertChildLocked is equivalent to insertChild, with additional
// preconditions.
//
// Preconditions:
// * d must represent a directory inode.
// * d.dirMu must be locked.
// * d.fs.mu must be locked for at least reading.
func (d *Dentry) insertChildLocked(name string, child *Dentry) {
if !d.isDir() {
panic(fmt.Sprintf("insertChildLocked called on non-directory Dentry: %+v.", d))
}
d.IncRef() // DecRef in child's Dentry.destroy.
child.parent = d
child.name = name
if d.children == nil {
d.children = make(map[string]*Dentry)
}
d.children[name] = child
}
// Inode returns the dentry's inode.
func (d *Dentry) Inode() Inode {
return d.inode
}
// FSLocalPath returns an absolute path to d, relative to the root of its
// filesystem.
func (d *Dentry) FSLocalPath() string {
var b fspath.Builder
_ = genericPrependPath(vfs.VirtualDentry{}, nil, d, &b)
b.PrependByte('/')
return b.String()
}
// WalkDentryTree traverses p in the dentry tree for this filesystem. Note that
// this only traverses the dentry tree and is not a general path traversal. No
// symlinks and dynamic children are resolved, and no permission checks are
// performed. The caller is responsible for ensuring the returned Dentry exists
// for an appropriate lifetime.
//
// p is interpreted starting at d, and may be absolute or relative (absolute vs
// relative paths both refer to the same target here, since p is absolute from
// d). p may contain "." and "..", but will not allow traversal above d (similar
// to ".." at the root dentry).
//
// This is useful for filesystem internals, where the filesystem may not be
// mounted yet. For a mounted filesystem, use GetDentryAt.
func (d *Dentry) WalkDentryTree(ctx context.Context, vfsObj *vfs.VirtualFilesystem, p fspath.Path) (*Dentry, error) {
d.fs.mu.RLock()
defer d.fs.processDeferredDecRefs(ctx)
defer d.fs.mu.RUnlock()
target := d
for pit := p.Begin; pit.Ok(); pit = pit.Next() {
pc := pit.String()
switch {
case target == nil:
return nil, linuxerr.ENOENT
case pc == ".":
// No-op, consume component and continue.
case pc == "..":
if target == d {
// Don't let .. traverse above the start point of the walk.
continue
}
target = target.parent
// Parent doesn't need revalidation since we revalidated it on the
// way to the child, and we're still holding fs.mu.
default:
var err error
d.dirMu.Lock()
target, err = d.fs.revalidateChildLocked(ctx, vfsObj, target, pc, target.children[pc])
d.dirMu.Unlock()
if err != nil {
return nil, err
}
}
}
if target == nil {
return nil, linuxerr.ENOENT
}
target.IncRef()
return target, nil
}
// The Inode interface maps filesystem-level operations that operate on paths to
// equivalent operations on specific filesystem nodes.
//
// The interface methods are groups into logical categories as sub interfaces
// below. Generally, an implementation for each sub interface can be provided by
// embedding an appropriate type from inode_impl_utils.go. The sub interfaces
// are purely organizational. Methods declared directly in the main interface
// have no generic implementations, and should be explicitly provided by the
// client filesystem.
//
// Generally, implementations are not responsible for tasks that are common to
// all filesystems. These include:
//
// - Checking that dentries passed to methods are of the appropriate file type.
// - Checking permissions.
//
// Inode functions may be called holding filesystem wide locks and are not
// allowed to call vfs functions that may reenter, unless otherwise noted.
//
// Specific responsibilities of implementations are documented below.
type Inode interface {
// Methods related to reference counting. A generic implementation is
// provided by InodeNoopRefCount. These methods are generally called by the
// equivalent Dentry methods.
inodeRefs
// Methods related to node metadata. A generic implementation is provided by
// InodeAttrs. Note that a concrete filesystem using kernfs is responsible for
// managing link counts.
inodeMetadata
// Method for inodes that represent symlink. InodeNotSymlink provides a
// blanket implementation for all non-symlink inodes.
inodeSymlink
// Method for inodes that represent directories. InodeNotDirectory provides
// a blanket implementation for all non-directory inodes.
inodeDirectory
// Open creates a file description for the filesystem object represented by
// this inode. The returned file description should hold a reference on the
// dentry for its lifetime.
//
// Precondition: rp.Done(). vfsd.Impl() must be the kernfs Dentry containing
// the inode on which Open() is being called.
Open(ctx context.Context, rp *vfs.ResolvingPath, d *Dentry, opts vfs.OpenOptions) (*vfs.FileDescription, error)
// StatFS returns filesystem statistics for the client filesystem. This
// corresponds to vfs.FilesystemImpl.StatFSAt. If the client filesystem
// doesn't support statfs(2), this should return ENOSYS.
StatFS(ctx context.Context, fs *vfs.Filesystem) (linux.Statfs, error)
// Keep indicates whether the dentry created after Inode.Lookup should be
// kept in the kernfs dentry tree.
Keep() bool
// Valid should return true if this inode is still valid, or needs to
// be resolved again by a call to Lookup.
Valid(ctx context.Context) bool
}
type inodeRefs interface {
IncRef()
DecRef(ctx context.Context)
TryIncRef() bool
}
type inodeMetadata interface {
// CheckPermissions checks that creds may access this inode for the
// requested access type, per the the rules of
// fs/namei.c:generic_permission().
CheckPermissions(ctx context.Context, creds *auth.Credentials, ats vfs.AccessTypes) error
// Mode returns the (struct stat)::st_mode value for this inode. This is
// separated from Stat for performance.
Mode() linux.FileMode
// Stat returns the metadata for this inode. This corresponds to
// vfs.FilesystemImpl.StatAt.
Stat(ctx context.Context, fs *vfs.Filesystem, opts vfs.StatOptions) (linux.Statx, error)
// SetStat updates the metadata for this inode. This corresponds to
// vfs.FilesystemImpl.SetStatAt. Implementations are responsible for checking
// if the operation can be performed (see vfs.CheckSetStat() for common
// checks).
SetStat(ctx context.Context, fs *vfs.Filesystem, creds *auth.Credentials, opts vfs.SetStatOptions) error
}
// Precondition: All methods in this interface may only be called on directory
// inodes.
type inodeDirectory interface {
// The New{File,Dir,Node,Link,Symlink} methods below should return a new inode
// that will be hashed into the dentry tree.
//
// These inode constructors are inode-level operations rather than
// filesystem-level operations to allow client filesystems to mix different
// implementations based on the new node's location in the
// filesystem.
// HasChildren returns true if the directory inode has any children.
HasChildren() bool
// NewFile creates a new regular file inode.
NewFile(ctx context.Context, name string, opts vfs.OpenOptions) (Inode, error)
// NewDir creates a new directory inode.
NewDir(ctx context.Context, name string, opts vfs.MkdirOptions) (Inode, error)
// NewLink creates a new hardlink to a specified inode in this
// directory. Implementations should create a new kernfs Dentry pointing to
// target, and update target's link count.
NewLink(ctx context.Context, name string, target Inode) (Inode, error)
// NewSymlink creates a new symbolic link inode.
NewSymlink(ctx context.Context, name, target string) (Inode, error)
// NewNode creates a new filesystem node for a mknod syscall.
NewNode(ctx context.Context, name string, opts vfs.MknodOptions) (Inode, error)
// Unlink removes a child dentry from this directory inode.
Unlink(ctx context.Context, name string, child Inode) error
// RmDir removes an empty child directory from this directory
// inode. Implementations must update the parent directory's link count,
// if required. Implementations are not responsible for checking that child
// is a directory, or checking for an empty directory.
RmDir(ctx context.Context, name string, child Inode) error
// Rename is called on the source directory containing an inode being
// renamed. child points to the resolved child in the source directory.
// dstDir is guaranteed to be a directory inode.
//
// On a successful call to Rename, the caller updates the dentry tree to
// reflect the name change.
//
// Precondition: Caller must serialize concurrent calls to Rename.
Rename(ctx context.Context, oldname, newname string, child, dstDir Inode) error
// Lookup should return an appropriate inode if name should resolve to a
// child of this directory inode. This gives the directory an opportunity
// on every lookup to resolve additional entries. This is only called when
// the inode is a directory.
//
// The child returned by Lookup will be hashed into the VFS dentry tree,
// at least for the duration of the current FS operation.
//
// Lookup must return the child with an extra reference whose ownership is
// transferred to the dentry that is created to point to that inode. If
// Inode.Keep returns false, that new dentry will be dropped at the end of
// the current filesystem operation (before returning back to the VFS
// layer) if no other ref is picked on that dentry. If Inode.Keep returns
// true, then the dentry will be cached into the dentry tree until it is
// Unlink'd or RmDir'd.
Lookup(ctx context.Context, name string) (Inode, error)
// IterDirents is used to iterate over dynamically created entries. It invokes
// cb on each entry in the directory represented by the Inode.
// 'offset' is the offset for the entire IterDirents call, which may include
// results from the caller (e.g. "." and ".."). 'relOffset' is the offset
// inside the entries returned by this IterDirents invocation. In other words,
// 'offset' should be used to calculate each vfs.Dirent.NextOff as well as
// the return value, while 'relOffset' is the place to start iteration.
IterDirents(ctx context.Context, mnt *vfs.Mount, callback vfs.IterDirentsCallback, offset, relOffset int64) (newOffset int64, err error)
}
type inodeSymlink interface {
// Readlink returns the target of a symbolic link. If an inode is not a
// symlink, the implementation should return EINVAL.
//
// Readlink is called with no kernfs locks held, so it may reenter if needed
// to resolve symlink targets.
Readlink(ctx context.Context, mnt *vfs.Mount) (string, error)
// Getlink returns the target of a symbolic link, as used by path
// resolution:
//
// - If the inode is a "magic link" (a link whose target is most accurately
// represented as a VirtualDentry), Getlink returns (ok VirtualDentry, "",
// nil). A reference is taken on the returned VirtualDentry.
//
// - If the inode is an ordinary symlink, Getlink returns (zero-value
// VirtualDentry, symlink target, nil).
//
// - If the inode is not a symlink, Getlink returns (zero-value
// VirtualDentry, "", EINVAL).
Getlink(ctx context.Context, mnt *vfs.Mount) (vfs.VirtualDentry, string, error)
}
|