1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
|
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package host
import (
"fmt"
"syscall"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/fdnotifier"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/refs"
"gvisor.dev/gvisor/pkg/sentry/socket/control"
"gvisor.dev/gvisor/pkg/sentry/socket/unix/transport"
"gvisor.dev/gvisor/pkg/sentry/uniqueid"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/syserr"
"gvisor.dev/gvisor/pkg/syserror"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/unet"
"gvisor.dev/gvisor/pkg/waiter"
)
// Create a new host-backed endpoint from the given fd and its corresponding
// notification queue.
func newEndpoint(ctx context.Context, hostFD int, queue *waiter.Queue) (transport.Endpoint, error) {
// Set up an external transport.Endpoint using the host fd.
addr := fmt.Sprintf("hostfd:[%d]", hostFD)
e, err := NewConnectedEndpoint(ctx, hostFD, addr, true /* saveable */)
if err != nil {
return nil, err.ToError()
}
ep := transport.NewExternal(ctx, e.stype, uniqueid.GlobalProviderFromContext(ctx), queue, e, e)
return ep, nil
}
// maxSendBufferSize is the maximum host send buffer size allowed for endpoint.
//
// N.B. 8MB is the default maximum on Linux (2 * sysctl_wmem_max).
const maxSendBufferSize = 8 << 20
// ConnectedEndpoint is an implementation of transport.ConnectedEndpoint and
// transport.Receiver. It is backed by a host fd that was imported at sentry
// startup. This fd is shared with a hostfs inode, which retains ownership of
// it.
//
// ConnectedEndpoint is saveable, since we expect that the host will provide
// the same fd upon restore.
//
// As of this writing, we only allow Unix sockets to be imported.
//
// +stateify savable
type ConnectedEndpoint struct {
// ref keeps track of references to a ConnectedEndpoint.
ref refs.AtomicRefCount
// mu protects fd below.
mu sync.RWMutex `state:"nosave"`
// fd is the host fd backing this endpoint.
fd int
// addr is the address at which this endpoint is bound.
addr string
// sndbuf is the size of the send buffer.
//
// N.B. When this is smaller than the host size, we present it via
// GetSockOpt and message splitting/rejection in SendMsg, but do not
// prevent lots of small messages from filling the real send buffer
// size on the host.
sndbuf int64 `state:"nosave"`
// stype is the type of Unix socket.
stype linux.SockType
}
// init performs initialization required for creating new ConnectedEndpoints and
// for restoring them.
func (c *ConnectedEndpoint) init() *syserr.Error {
family, err := syscall.GetsockoptInt(c.fd, syscall.SOL_SOCKET, syscall.SO_DOMAIN)
if err != nil {
return syserr.FromError(err)
}
if family != syscall.AF_UNIX {
// We only allow Unix sockets.
return syserr.ErrInvalidEndpointState
}
stype, err := syscall.GetsockoptInt(c.fd, syscall.SOL_SOCKET, syscall.SO_TYPE)
if err != nil {
return syserr.FromError(err)
}
if err := syscall.SetNonblock(c.fd, true); err != nil {
return syserr.FromError(err)
}
sndbuf, err := syscall.GetsockoptInt(c.fd, syscall.SOL_SOCKET, syscall.SO_SNDBUF)
if err != nil {
return syserr.FromError(err)
}
if sndbuf > maxSendBufferSize {
log.Warningf("Socket send buffer too large: %d", sndbuf)
return syserr.ErrInvalidEndpointState
}
c.stype = linux.SockType(stype)
c.sndbuf = int64(sndbuf)
return nil
}
// NewConnectedEndpoint creates a new ConnectedEndpoint backed by a host fd
// imported at sentry startup,
//
// The caller is responsible for calling Init(). Additionaly, Release needs to
// be called twice because ConnectedEndpoint is both a transport.Receiver and
// transport.ConnectedEndpoint.
func NewConnectedEndpoint(ctx context.Context, hostFD int, addr string, saveable bool) (*ConnectedEndpoint, *syserr.Error) {
e := ConnectedEndpoint{
fd: hostFD,
addr: addr,
}
if err := e.init(); err != nil {
return nil, err
}
// AtomicRefCounters start off with a single reference. We need two.
e.ref.IncRef()
e.ref.EnableLeakCheck("host.ConnectedEndpoint")
return &e, nil
}
// Send implements transport.ConnectedEndpoint.Send.
func (c *ConnectedEndpoint) Send(data [][]byte, controlMessages transport.ControlMessages, from tcpip.FullAddress) (int64, bool, *syserr.Error) {
c.mu.RLock()
defer c.mu.RUnlock()
if !controlMessages.Empty() {
return 0, false, syserr.ErrInvalidEndpointState
}
// Since stream sockets don't preserve message boundaries, we can write
// only as much of the message as fits in the send buffer.
truncate := c.stype == linux.SOCK_STREAM
n, totalLen, err := fdWriteVec(c.fd, data, c.sndbuf, truncate)
if n < totalLen && err == nil {
// The host only returns a short write if it would otherwise
// block (and only for stream sockets).
err = syserror.EAGAIN
}
if n > 0 && err != syserror.EAGAIN {
// The caller may need to block to send more data, but
// otherwise there isn't anything that can be done about an
// error with a partial write.
err = nil
}
// There is no need for the callee to call SendNotify because fdWriteVec
// uses the host's sendmsg(2) and the host kernel's queue.
return n, false, syserr.FromError(err)
}
// SendNotify implements transport.ConnectedEndpoint.SendNotify.
func (c *ConnectedEndpoint) SendNotify() {}
// CloseSend implements transport.ConnectedEndpoint.CloseSend.
func (c *ConnectedEndpoint) CloseSend() {
c.mu.Lock()
defer c.mu.Unlock()
if err := syscall.Shutdown(c.fd, syscall.SHUT_WR); err != nil {
// A well-formed UDS shutdown can't fail. See
// net/unix/af_unix.c:unix_shutdown.
panic(fmt.Sprintf("failed write shutdown on host socket %+v: %v", c, err))
}
}
// CloseNotify implements transport.ConnectedEndpoint.CloseNotify.
func (c *ConnectedEndpoint) CloseNotify() {}
// Writable implements transport.ConnectedEndpoint.Writable.
func (c *ConnectedEndpoint) Writable() bool {
c.mu.RLock()
defer c.mu.RUnlock()
return fdnotifier.NonBlockingPoll(int32(c.fd), waiter.EventOut)&waiter.EventOut != 0
}
// Passcred implements transport.ConnectedEndpoint.Passcred.
func (c *ConnectedEndpoint) Passcred() bool {
// We don't support credential passing for host sockets.
return false
}
// GetLocalAddress implements transport.ConnectedEndpoint.GetLocalAddress.
func (c *ConnectedEndpoint) GetLocalAddress() (tcpip.FullAddress, *tcpip.Error) {
return tcpip.FullAddress{Addr: tcpip.Address(c.addr)}, nil
}
// EventUpdate implements transport.ConnectedEndpoint.EventUpdate.
func (c *ConnectedEndpoint) EventUpdate() {
c.mu.RLock()
defer c.mu.RUnlock()
if c.fd != -1 {
fdnotifier.UpdateFD(int32(c.fd))
}
}
// Recv implements transport.Receiver.Recv.
func (c *ConnectedEndpoint) Recv(data [][]byte, creds bool, numRights int, peek bool) (int64, int64, transport.ControlMessages, bool, tcpip.FullAddress, bool, *syserr.Error) {
c.mu.RLock()
defer c.mu.RUnlock()
var cm unet.ControlMessage
if numRights > 0 {
cm.EnableFDs(int(numRights))
}
// N.B. Unix sockets don't have a receive buffer, the send buffer
// serves both purposes.
rl, ml, cl, cTrunc, err := fdReadVec(c.fd, data, []byte(cm), peek, c.sndbuf)
if rl > 0 && err != nil {
// We got some data, so all we need to do on error is return
// the data that we got. Short reads are fine, no need to
// block.
err = nil
}
if err != nil {
return 0, 0, transport.ControlMessages{}, false, tcpip.FullAddress{}, false, syserr.FromError(err)
}
// There is no need for the callee to call RecvNotify because fdReadVec uses
// the host's recvmsg(2) and the host kernel's queue.
// Trim the control data if we received less than the full amount.
if cl < uint64(len(cm)) {
cm = cm[:cl]
}
// Avoid extra allocations in the case where there isn't any control data.
if len(cm) == 0 {
return rl, ml, transport.ControlMessages{}, cTrunc, tcpip.FullAddress{Addr: tcpip.Address(c.addr)}, false, nil
}
fds, err := cm.ExtractFDs()
if err != nil {
return 0, 0, transport.ControlMessages{}, false, tcpip.FullAddress{}, false, syserr.FromError(err)
}
if len(fds) == 0 {
return rl, ml, transport.ControlMessages{}, cTrunc, tcpip.FullAddress{Addr: tcpip.Address(c.addr)}, false, nil
}
return rl, ml, control.NewVFS2(nil, nil, newSCMRights(fds)), cTrunc, tcpip.FullAddress{Addr: tcpip.Address(c.addr)}, false, nil
}
// RecvNotify implements transport.Receiver.RecvNotify.
func (c *ConnectedEndpoint) RecvNotify() {}
// CloseRecv implements transport.Receiver.CloseRecv.
func (c *ConnectedEndpoint) CloseRecv() {
c.mu.Lock()
defer c.mu.Unlock()
if err := syscall.Shutdown(c.fd, syscall.SHUT_RD); err != nil {
// A well-formed UDS shutdown can't fail. See
// net/unix/af_unix.c:unix_shutdown.
panic(fmt.Sprintf("failed read shutdown on host socket %+v: %v", c, err))
}
}
// Readable implements transport.Receiver.Readable.
func (c *ConnectedEndpoint) Readable() bool {
c.mu.RLock()
defer c.mu.RUnlock()
return fdnotifier.NonBlockingPoll(int32(c.fd), waiter.EventIn)&waiter.EventIn != 0
}
// SendQueuedSize implements transport.Receiver.SendQueuedSize.
func (c *ConnectedEndpoint) SendQueuedSize() int64 {
// TODO(gvisor.dev/issue/273): SendQueuedSize isn't supported for host
// sockets because we don't allow the sentry to call ioctl(2).
return -1
}
// RecvQueuedSize implements transport.Receiver.RecvQueuedSize.
func (c *ConnectedEndpoint) RecvQueuedSize() int64 {
// TODO(gvisor.dev/issue/273): RecvQueuedSize isn't supported for host
// sockets because we don't allow the sentry to call ioctl(2).
return -1
}
// SendMaxQueueSize implements transport.Receiver.SendMaxQueueSize.
func (c *ConnectedEndpoint) SendMaxQueueSize() int64 {
return int64(c.sndbuf)
}
// RecvMaxQueueSize implements transport.Receiver.RecvMaxQueueSize.
func (c *ConnectedEndpoint) RecvMaxQueueSize() int64 {
// N.B. Unix sockets don't use the receive buffer. We'll claim it is
// the same size as the send buffer.
return int64(c.sndbuf)
}
func (c *ConnectedEndpoint) destroyLocked() {
c.fd = -1
}
// Release implements transport.ConnectedEndpoint.Release and
// transport.Receiver.Release.
func (c *ConnectedEndpoint) Release() {
c.ref.DecRefWithDestructor(func() {
c.mu.Lock()
c.destroyLocked()
c.mu.Unlock()
})
}
// CloseUnread implements transport.ConnectedEndpoint.CloseUnread.
func (c *ConnectedEndpoint) CloseUnread() {}
// SCMConnectedEndpoint represents an endpoint backed by a host fd that was
// passed through a gofer Unix socket. It resembles ConnectedEndpoint, with the
// following differences:
// - SCMConnectedEndpoint is not saveable, because the host cannot guarantee
// the same descriptor number across S/R.
// - SCMConnectedEndpoint holds ownership of its fd and notification queue.
type SCMConnectedEndpoint struct {
ConnectedEndpoint
queue *waiter.Queue
}
// Init will do the initialization required without holding other locks.
func (e *SCMConnectedEndpoint) Init() error {
return fdnotifier.AddFD(int32(e.fd), e.queue)
}
// Release implements transport.ConnectedEndpoint.Release and
// transport.Receiver.Release.
func (e *SCMConnectedEndpoint) Release() {
e.ref.DecRefWithDestructor(func() {
e.mu.Lock()
if err := syscall.Close(e.fd); err != nil {
log.Warningf("Failed to close host fd %d: %v", err)
}
fdnotifier.RemoveFD(int32(e.fd))
e.destroyLocked()
e.mu.Unlock()
})
}
// NewSCMEndpoint creates a new SCMConnectedEndpoint backed by a host fd that
// was passed through a Unix socket.
//
// The caller is responsible for calling Init(). Additionaly, Release needs to
// be called twice because ConnectedEndpoint is both a transport.Receiver and
// transport.ConnectedEndpoint.
func NewSCMEndpoint(ctx context.Context, hostFD int, queue *waiter.Queue, addr string) (*SCMConnectedEndpoint, *syserr.Error) {
e := SCMConnectedEndpoint{
ConnectedEndpoint: ConnectedEndpoint{
fd: hostFD,
addr: addr,
},
queue: queue,
}
if err := e.init(); err != nil {
return nil, err
}
// AtomicRefCounters start off with a single reference. We need two.
e.ref.IncRef()
e.ref.EnableLeakCheck("host.SCMConnectedEndpoint")
return &e, nil
}
|