summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/fsimpl/gofer/gofer.go
blob: 7bef8242f45059b011292ed54f62c2a30588474f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Package gofer provides a filesystem implementation that is backed by a 9p
// server, interchangably referred to as "gofers" throughout this package.
//
// Lock order:
//   regularFileFD/directoryFD.mu
//     filesystem.renameMu
//       dentry.cachingMu
//         filesystem.cacheMu
//         dentry.dirMu
//           filesystem.syncMu
//           dentry.metadataMu
//             *** "memmap.Mappable locks" below this point
//             dentry.mapsMu
//               *** "memmap.Mappable locks taken by Translate" below this point
//               dentry.handleMu
//                 dentry.dataMu
//             filesystem.inoMu
//   specialFileFD.mu
//     specialFileFD.bufMu
//
// Locking dentry.dirMu and dentry.metadataMu in multiple dentries requires that
// either ancestor dentries are locked before descendant dentries, or that
// filesystem.renameMu is locked for writing.
package gofer

import (
	"fmt"
	"strconv"
	"strings"
	"sync/atomic"

	"golang.org/x/sys/unix"
	"gvisor.dev/gvisor/pkg/abi/linux"
	"gvisor.dev/gvisor/pkg/context"
	"gvisor.dev/gvisor/pkg/errors/linuxerr"
	"gvisor.dev/gvisor/pkg/hostarch"
	"gvisor.dev/gvisor/pkg/lisafs"
	"gvisor.dev/gvisor/pkg/log"
	"gvisor.dev/gvisor/pkg/p9"
	refs_vfs1 "gvisor.dev/gvisor/pkg/refs"
	"gvisor.dev/gvisor/pkg/refsvfs2"
	"gvisor.dev/gvisor/pkg/sentry/fs/fsutil"
	fslock "gvisor.dev/gvisor/pkg/sentry/fs/lock"
	"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
	"gvisor.dev/gvisor/pkg/sentry/kernel/pipe"
	ktime "gvisor.dev/gvisor/pkg/sentry/kernel/time"
	"gvisor.dev/gvisor/pkg/sentry/memmap"
	"gvisor.dev/gvisor/pkg/sentry/pgalloc"
	"gvisor.dev/gvisor/pkg/sentry/socket/unix/transport"
	"gvisor.dev/gvisor/pkg/sentry/vfs"
	"gvisor.dev/gvisor/pkg/sync"
	"gvisor.dev/gvisor/pkg/unet"
)

// Name is the default filesystem name.
const Name = "9p"

// Mount option names for goferfs.
const (
	moptTransport              = "trans"
	moptReadFD                 = "rfdno"
	moptWriteFD                = "wfdno"
	moptAname                  = "aname"
	moptDfltUID                = "dfltuid"
	moptDfltGID                = "dfltgid"
	moptMsize                  = "msize"
	moptVersion                = "version"
	moptDentryCacheLimit       = "dentry_cache_limit"
	moptCache                  = "cache"
	moptForcePageCache         = "force_page_cache"
	moptLimitHostFDTranslation = "limit_host_fd_translation"
	moptOverlayfsStaleRead     = "overlayfs_stale_read"
	moptLisafs                 = "lisafs"
)

// Valid values for the "cache" mount option.
const (
	cacheNone                = "none"
	cacheFSCache             = "fscache"
	cacheFSCacheWritethrough = "fscache_writethrough"
	cacheRemoteRevalidating  = "remote_revalidating"
)

// Valid values for "trans" mount option.
const transportModeFD = "fd"

// FilesystemType implements vfs.FilesystemType.
//
// +stateify savable
type FilesystemType struct{}

// filesystem implements vfs.FilesystemImpl.
//
// +stateify savable
type filesystem struct {
	vfsfs vfs.Filesystem

	// mfp is used to allocate memory that caches regular file contents. mfp is
	// immutable.
	mfp pgalloc.MemoryFileProvider

	// Immutable options.
	opts  filesystemOptions
	iopts InternalFilesystemOptions

	// client is the client used by this filesystem. client is immutable.
	client *p9.Client `state:"nosave"`

	// clientLisa is the client used for communicating with the server when
	// lisafs is enabled. lisafsCient is immutable.
	clientLisa *lisafs.Client `state:"nosave"`

	// clock is a realtime clock used to set timestamps in file operations.
	clock ktime.Clock

	// devMinor is the filesystem's minor device number. devMinor is immutable.
	devMinor uint32

	// root is the root dentry. root is immutable.
	root *dentry

	// renameMu serves two purposes:
	//
	// - It synchronizes path resolution with renaming initiated by this
	// client.
	//
	// - It is held by path resolution to ensure that reachable dentries remain
	// valid. A dentry is reachable by path resolution if it has a non-zero
	// reference count (such that it is usable as vfs.ResolvingPath.Start() or
	// is reachable from its children), or if it is a child dentry (such that
	// it is reachable from its parent).
	renameMu sync.RWMutex `state:"nosave"`

	// cachedDentries contains all dentries with 0 references. (Due to race
	// conditions, it may also contain dentries with non-zero references.)
	// cachedDentriesLen is the number of dentries in cachedDentries. These fields
	// are protected by cacheMu.
	cacheMu           sync.Mutex `state:"nosave"`
	cachedDentries    dentryList
	cachedDentriesLen uint64

	// syncableDentries contains all non-synthetic dentries. specialFileFDs
	// contains all open specialFileFDs. These fields are protected by syncMu.
	syncMu           sync.Mutex `state:"nosave"`
	syncableDentries map[*dentry]struct{}
	specialFileFDs   map[*specialFileFD]struct{}

	// inoByQIDPath maps previously-observed QID.Paths to inode numbers
	// assigned to those paths. inoByQIDPath is not preserved across
	// checkpoint/restore because QIDs may be reused between different gofer
	// processes, so QIDs may be repeated for different files across
	// checkpoint/restore. inoByQIDPath is protected by inoMu.
	inoMu        sync.Mutex        `state:"nosave"`
	inoByQIDPath map[uint64]uint64 `state:"nosave"`

	// inoByKey is the same as inoByQIDPath but only used by lisafs. It helps
	// identify inodes based on the device ID and host inode number provided
	// by the gofer process. It is not preserved across checkpoint/restore for
	// the same reason as above. inoByKey is protected by inoMu.
	inoByKey map[inoKey]uint64 `state:"nosave"`

	// lastIno is the last inode number assigned to a file. lastIno is accessed
	// using atomic memory operations.
	lastIno uint64

	// savedDentryRW records open read/write handles during save/restore.
	savedDentryRW map[*dentry]savedDentryRW

	// released is nonzero once filesystem.Release has been called. It is accessed
	// with atomic memory operations.
	released int32
}

// +stateify savable
type filesystemOptions struct {
	// "Standard" 9P options.
	fd      int
	aname   string
	interop InteropMode // derived from the "cache" mount option
	dfltuid auth.KUID
	dfltgid auth.KGID
	msize   uint32
	version string

	// maxCachedDentries is the maximum size of filesystem.cachedDentries.
	maxCachedDentries uint64

	// If forcePageCache is true, host FDs may not be used for application
	// memory mappings even if available; instead, the client must perform its
	// own caching of regular file pages. This is primarily useful for testing.
	forcePageCache bool

	// If limitHostFDTranslation is true, apply maxFillRange() constraints to
	// host FD mappings returned by dentry.(memmap.Mappable).Translate(). This
	// makes memory accounting behavior more consistent between cases where
	// host FDs are / are not available, but may increase the frequency of
	// sentry-handled page faults on files for which a host FD is available.
	limitHostFDTranslation bool

	// If overlayfsStaleRead is true, O_RDONLY host FDs provided by the remote
	// filesystem may not be coherent with writable host FDs opened later, so
	// all uses of the former must be replaced by uses of the latter. This is
	// usually only the case when the remote filesystem is a Linux overlayfs
	// mount. (Prior to Linux 4.18, patch series centered on commit
	// d1d04ef8572b "ovl: stack file ops", both I/O and memory mappings were
	// incoherent between pre-copy-up and post-copy-up FDs; after that patch
	// series, only memory mappings are incoherent.)
	overlayfsStaleRead bool

	// If regularFilesUseSpecialFileFD is true, application FDs representing
	// regular files will use distinct file handles for each FD, in the same
	// way that application FDs representing "special files" such as sockets
	// do. Note that this disables client caching and mmap for regular files.
	regularFilesUseSpecialFileFD bool

	// lisaEnabled indicates whether the client will use lisafs protocol to
	// communicate with the server instead of 9P.
	lisaEnabled bool
}

// InteropMode controls the client's interaction with other remote filesystem
// users.
//
// +stateify savable
type InteropMode uint32

const (
	// InteropModeExclusive is appropriate when the filesystem client is the
	// only user of the remote filesystem.
	//
	// - The client may cache arbitrary filesystem state (file data, metadata,
	// filesystem structure, etc.).
	//
	// - Client changes to filesystem state may be sent to the remote
	// filesystem asynchronously, except when server permission checks are
	// necessary.
	//
	// - File timestamps are based on client clocks. This ensures that users of
	// the client observe timestamps that are coherent with their own clocks
	// and consistent with Linux's semantics (in particular, it is not always
	// possible for clients to set arbitrary atimes and mtimes depending on the
	// remote filesystem implementation, and never possible for clients to set
	// arbitrary ctimes.)
	InteropModeExclusive InteropMode = iota

	// InteropModeWritethrough is appropriate when there are read-only users of
	// the remote filesystem that expect to observe changes made by the
	// filesystem client.
	//
	// - The client may cache arbitrary filesystem state.
	//
	// - Client changes to filesystem state must be sent to the remote
	// filesystem synchronously.
	//
	// - File timestamps are based on client clocks. As a corollary, access
	// timestamp changes from other remote filesystem users will not be visible
	// to the client.
	InteropModeWritethrough

	// InteropModeShared is appropriate when there are users of the remote
	// filesystem that may mutate its state other than the client.
	//
	// - The client must verify ("revalidate") cached filesystem state before
	// using it.
	//
	// - Client changes to filesystem state must be sent to the remote
	// filesystem synchronously.
	//
	// - File timestamps are based on server clocks. This is necessary to
	// ensure that timestamp changes are synchronized between remote filesystem
	// users.
	//
	// Note that the correctness of InteropModeShared depends on the server
	// correctly implementing 9P fids (i.e. each fid immutably represents a
	// single filesystem object), even in the presence of remote filesystem
	// mutations from other users. If this is violated, the behavior of the
	// client is undefined.
	InteropModeShared
)

// InternalFilesystemOptions may be passed as
// vfs.GetFilesystemOptions.InternalData to FilesystemType.GetFilesystem.
//
// +stateify savable
type InternalFilesystemOptions struct {
	// If UniqueID is non-empty, it is an opaque string used to reassociate the
	// filesystem with a new server FD during restoration from checkpoint.
	UniqueID string

	// If LeakConnection is true, do not close the connection to the server
	// when the Filesystem is released. This is necessary for deployments in
	// which servers can handle only a single client and report failure if that
	// client disconnects.
	LeakConnection bool

	// If OpenSocketsByConnecting is true, silently translate attempts to open
	// files identifying as sockets to connect RPCs.
	OpenSocketsByConnecting bool
}

// _V9FS_DEFUID and _V9FS_DEFGID (from Linux's fs/9p/v9fs.h) are the default
// UIDs and GIDs used for files that do not provide a specific owner or group
// respectively.
const (
	// uint32(-2) doesn't work in Go.
	_V9FS_DEFUID = auth.KUID(4294967294)
	_V9FS_DEFGID = auth.KGID(4294967294)
)

// Name implements vfs.FilesystemType.Name.
func (FilesystemType) Name() string {
	return Name
}

// Release implements vfs.FilesystemType.Release.
func (FilesystemType) Release(ctx context.Context) {}

// GetFilesystem implements vfs.FilesystemType.GetFilesystem.
func (fstype FilesystemType) GetFilesystem(ctx context.Context, vfsObj *vfs.VirtualFilesystem, creds *auth.Credentials, source string, opts vfs.GetFilesystemOptions) (*vfs.Filesystem, *vfs.Dentry, error) {
	mfp := pgalloc.MemoryFileProviderFromContext(ctx)
	if mfp == nil {
		ctx.Warningf("gofer.FilesystemType.GetFilesystem: context does not provide a pgalloc.MemoryFileProvider")
		return nil, nil, linuxerr.EINVAL
	}

	mopts := vfs.GenericParseMountOptions(opts.Data)
	var fsopts filesystemOptions

	fd, err := getFDFromMountOptionsMap(ctx, mopts)
	if err != nil {
		return nil, nil, err
	}
	fsopts.fd = fd

	// Get the attach name.
	fsopts.aname = "/"
	if aname, ok := mopts[moptAname]; ok {
		delete(mopts, moptAname)
		fsopts.aname = aname
	}

	// Parse the cache policy. For historical reasons, this defaults to the
	// least generally-applicable option, InteropModeExclusive.
	fsopts.interop = InteropModeExclusive
	if cache, ok := mopts[moptCache]; ok {
		delete(mopts, moptCache)
		switch cache {
		case cacheFSCache:
			fsopts.interop = InteropModeExclusive
		case cacheFSCacheWritethrough:
			fsopts.interop = InteropModeWritethrough
		case cacheNone:
			fsopts.regularFilesUseSpecialFileFD = true
			fallthrough
		case cacheRemoteRevalidating:
			fsopts.interop = InteropModeShared
		default:
			ctx.Warningf("gofer.FilesystemType.GetFilesystem: invalid cache policy: %s=%s", moptCache, cache)
			return nil, nil, linuxerr.EINVAL
		}
	}

	// Parse the default UID and GID.
	fsopts.dfltuid = _V9FS_DEFUID
	if dfltuidstr, ok := mopts[moptDfltUID]; ok {
		delete(mopts, moptDfltUID)
		dfltuid, err := strconv.ParseUint(dfltuidstr, 10, 32)
		if err != nil {
			ctx.Warningf("gofer.FilesystemType.GetFilesystem: invalid default UID: %s=%s", moptDfltUID, dfltuidstr)
			return nil, nil, linuxerr.EINVAL
		}
		// In Linux, dfltuid is interpreted as a UID and is converted to a KUID
		// in the caller's user namespace, but goferfs isn't
		// application-mountable.
		fsopts.dfltuid = auth.KUID(dfltuid)
	}
	fsopts.dfltgid = _V9FS_DEFGID
	if dfltgidstr, ok := mopts[moptDfltGID]; ok {
		delete(mopts, moptDfltGID)
		dfltgid, err := strconv.ParseUint(dfltgidstr, 10, 32)
		if err != nil {
			ctx.Warningf("gofer.FilesystemType.GetFilesystem: invalid default UID: %s=%s", moptDfltGID, dfltgidstr)
			return nil, nil, linuxerr.EINVAL
		}
		fsopts.dfltgid = auth.KGID(dfltgid)
	}

	// Parse the 9P message size.
	fsopts.msize = 1024 * 1024 // 1M, tested to give good enough performance up to 64M
	if msizestr, ok := mopts[moptMsize]; ok {
		delete(mopts, moptMsize)
		msize, err := strconv.ParseUint(msizestr, 10, 32)
		if err != nil {
			ctx.Warningf("gofer.FilesystemType.GetFilesystem: invalid message size: %s=%s", moptMsize, msizestr)
			return nil, nil, linuxerr.EINVAL
		}
		fsopts.msize = uint32(msize)
	}

	// Parse the 9P protocol version.
	fsopts.version = p9.HighestVersionString()
	if version, ok := mopts[moptVersion]; ok {
		delete(mopts, moptVersion)
		fsopts.version = version
	}

	// Parse the dentry cache limit.
	fsopts.maxCachedDentries = 1000
	if str, ok := mopts[moptDentryCacheLimit]; ok {
		delete(mopts, moptDentryCacheLimit)
		maxCachedDentries, err := strconv.ParseUint(str, 10, 64)
		if err != nil {
			ctx.Warningf("gofer.FilesystemType.GetFilesystem: invalid dentry cache limit: %s=%s", moptDentryCacheLimit, str)
			return nil, nil, linuxerr.EINVAL
		}
		fsopts.maxCachedDentries = maxCachedDentries
	}

	// Handle simple flags.
	if _, ok := mopts[moptForcePageCache]; ok {
		delete(mopts, moptForcePageCache)
		fsopts.forcePageCache = true
	}
	if _, ok := mopts[moptLimitHostFDTranslation]; ok {
		delete(mopts, moptLimitHostFDTranslation)
		fsopts.limitHostFDTranslation = true
	}
	if _, ok := mopts[moptOverlayfsStaleRead]; ok {
		delete(mopts, moptOverlayfsStaleRead)
		fsopts.overlayfsStaleRead = true
	}
	if lisafs, ok := mopts[moptLisafs]; ok {
		delete(mopts, moptLisafs)
		fsopts.lisaEnabled, err = strconv.ParseBool(lisafs)
		if err != nil {
			ctx.Warningf("gofer.FilesystemType.GetFilesystem: invalid lisafs option: %s", lisafs)
			return nil, nil, linuxerr.EINVAL
		}
	}
	// fsopts.regularFilesUseSpecialFileFD can only be enabled by specifying
	// "cache=none".

	// Check for unparsed options.
	if len(mopts) != 0 {
		ctx.Warningf("gofer.FilesystemType.GetFilesystem: unknown options: %v", mopts)
		return nil, nil, linuxerr.EINVAL
	}

	// Handle internal options.
	iopts, ok := opts.InternalData.(InternalFilesystemOptions)
	if opts.InternalData != nil && !ok {
		ctx.Warningf("gofer.FilesystemType.GetFilesystem: GetFilesystemOptions.InternalData has type %T, wanted gofer.InternalFilesystemOptions", opts.InternalData)
		return nil, nil, linuxerr.EINVAL
	}
	// If !ok, iopts being the zero value is correct.

	// Construct the filesystem object.
	devMinor, err := vfsObj.GetAnonBlockDevMinor()
	if err != nil {
		return nil, nil, err
	}
	fs := &filesystem{
		mfp:              mfp,
		opts:             fsopts,
		iopts:            iopts,
		clock:            ktime.RealtimeClockFromContext(ctx),
		devMinor:         devMinor,
		syncableDentries: make(map[*dentry]struct{}),
		specialFileFDs:   make(map[*specialFileFD]struct{}),
		inoByQIDPath:     make(map[uint64]uint64),
		inoByKey:         make(map[inoKey]uint64),
	}
	fs.vfsfs.Init(vfsObj, &fstype, fs)

	if err := fs.initClientAndRoot(ctx); err != nil {
		fs.vfsfs.DecRef(ctx)
		return nil, nil, err
	}

	return &fs.vfsfs, &fs.root.vfsd, nil
}

func (fs *filesystem) initClientAndRoot(ctx context.Context) error {
	var err error
	if fs.opts.lisaEnabled {
		var rootInode *lisafs.Inode
		rootInode, err = fs.initClientLisa(ctx)
		if err != nil {
			return err
		}
		fs.root, err = fs.newDentryLisa(ctx, rootInode)
		if err != nil {
			fs.clientLisa.CloseFDBatched(ctx, rootInode.ControlFD)
		}
	} else {
		fs.root, err = fs.initClient(ctx)
	}

	// Set the root's reference count to 2. One reference is returned to the
	// caller, and the other is held by fs to prevent the root from being "cached"
	// and subsequently evicted.
	if err == nil {
		fs.root.refs = 2
	}
	return err
}

func (fs *filesystem) initClientLisa(ctx context.Context) (*lisafs.Inode, error) {
	sock, err := unet.NewSocket(fs.opts.fd)
	if err != nil {
		return nil, err
	}

	var rootInode *lisafs.Inode
	ctx.UninterruptibleSleepStart(false)
	fs.clientLisa, rootInode, err = lisafs.NewClient(sock, fs.opts.aname)
	ctx.UninterruptibleSleepFinish(false)
	return rootInode, err
}

func (fs *filesystem) initClient(ctx context.Context) (*dentry, error) {
	// Connect to the server.
	if err := fs.dial(ctx); err != nil {
		return nil, err
	}

	// Perform attach to obtain the filesystem root.
	ctx.UninterruptibleSleepStart(false)
	attached, err := fs.client.Attach(fs.opts.aname)
	ctx.UninterruptibleSleepFinish(false)
	if err != nil {
		return nil, err
	}
	attachFile := p9file{attached}
	qid, attrMask, attr, err := attachFile.getAttr(ctx, dentryAttrMask())
	if err != nil {
		attachFile.close(ctx)
		return nil, err
	}

	// Construct the root dentry.
	root, err := fs.newDentry(ctx, attachFile, qid, attrMask, &attr)
	if err != nil {
		attachFile.close(ctx)
		return nil, err
	}
	return root, nil
}

func getFDFromMountOptionsMap(ctx context.Context, mopts map[string]string) (int, error) {
	// Check that the transport is "fd".
	trans, ok := mopts[moptTransport]
	if !ok || trans != transportModeFD {
		ctx.Warningf("gofer.getFDFromMountOptionsMap: transport must be specified as '%s=%s'", moptTransport, transportModeFD)
		return -1, linuxerr.EINVAL
	}
	delete(mopts, moptTransport)

	// Check that read and write FDs are provided and identical.
	rfdstr, ok := mopts[moptReadFD]
	if !ok {
		ctx.Warningf("gofer.getFDFromMountOptionsMap: read FD must be specified as '%s=<file descriptor>'", moptReadFD)
		return -1, linuxerr.EINVAL
	}
	delete(mopts, moptReadFD)
	rfd, err := strconv.Atoi(rfdstr)
	if err != nil {
		ctx.Warningf("gofer.getFDFromMountOptionsMap: invalid read FD: %s=%s", moptReadFD, rfdstr)
		return -1, linuxerr.EINVAL
	}
	wfdstr, ok := mopts[moptWriteFD]
	if !ok {
		ctx.Warningf("gofer.getFDFromMountOptionsMap: write FD must be specified as '%s=<file descriptor>'", moptWriteFD)
		return -1, linuxerr.EINVAL
	}
	delete(mopts, moptWriteFD)
	wfd, err := strconv.Atoi(wfdstr)
	if err != nil {
		ctx.Warningf("gofer.getFDFromMountOptionsMap: invalid write FD: %s=%s", moptWriteFD, wfdstr)
		return -1, linuxerr.EINVAL
	}
	if rfd != wfd {
		ctx.Warningf("gofer.getFDFromMountOptionsMap: read FD (%d) and write FD (%d) must be equal", rfd, wfd)
		return -1, linuxerr.EINVAL
	}
	return rfd, nil
}

// Preconditions: fs.client == nil.
func (fs *filesystem) dial(ctx context.Context) error {
	// Establish a connection with the server.
	conn, err := unet.NewSocket(fs.opts.fd)
	if err != nil {
		return err
	}

	// Perform version negotiation with the server.
	ctx.UninterruptibleSleepStart(false)
	client, err := p9.NewClient(conn, fs.opts.msize, fs.opts.version)
	ctx.UninterruptibleSleepFinish(false)
	if err != nil {
		conn.Close()
		return err
	}
	// Ownership of conn has been transferred to client.

	fs.client = client
	return nil
}

// Release implements vfs.FilesystemImpl.Release.
func (fs *filesystem) Release(ctx context.Context) {
	atomic.StoreInt32(&fs.released, 1)

	mf := fs.mfp.MemoryFile()
	fs.syncMu.Lock()
	for d := range fs.syncableDentries {
		d.handleMu.Lock()
		d.dataMu.Lock()
		if h := d.writeHandleLocked(); h.isOpen() {
			// Write dirty cached data to the remote file.
			if err := fsutil.SyncDirtyAll(ctx, &d.cache, &d.dirty, d.size, mf, h.writeFromBlocksAt); err != nil {
				log.Warningf("gofer.filesystem.Release: failed to flush dentry: %v", err)
			}
			// TODO(jamieliu): Do we need to flushf/fsync d?
		}
		// Discard cached pages.
		d.cache.DropAll(mf)
		d.dirty.RemoveAll()
		d.dataMu.Unlock()
		// Close host FDs if they exist.
		if d.readFD >= 0 {
			_ = unix.Close(int(d.readFD))
		}
		if d.writeFD >= 0 && d.readFD != d.writeFD {
			_ = unix.Close(int(d.writeFD))
		}
		d.readFD = -1
		d.writeFD = -1
		d.mmapFD = -1
		d.handleMu.Unlock()
	}
	// There can't be any specialFileFDs still using fs, since each such
	// FileDescription would hold a reference on a Mount holding a reference on
	// fs.
	fs.syncMu.Unlock()

	// If leak checking is enabled, release all outstanding references in the
	// filesystem. We deliberately avoid doing this outside of leak checking; we
	// have released all external resources above rather than relying on dentry
	// destructors.
	if refs_vfs1.GetLeakMode() != refs_vfs1.NoLeakChecking {
		fs.renameMu.Lock()
		fs.root.releaseSyntheticRecursiveLocked(ctx)
		fs.evictAllCachedDentriesLocked(ctx)
		fs.renameMu.Unlock()

		// An extra reference was held by the filesystem on the root to prevent it from
		// being cached/evicted.
		fs.root.DecRef(ctx)
	}

	if !fs.iopts.LeakConnection {
		// Close the connection to the server. This implicitly clunks all fids.
		if fs.opts.lisaEnabled {
			fs.clientLisa.Close()
		} else {
			fs.client.Close()
		}
	}

	fs.vfsfs.VirtualFilesystem().PutAnonBlockDevMinor(fs.devMinor)
}

// releaseSyntheticRecursiveLocked traverses the tree with root d and decrements
// the reference count on every synthetic dentry. Synthetic dentries have one
// reference for existence that should be dropped during filesystem.Release.
//
// Precondition: d.fs.renameMu is locked for writing.
func (d *dentry) releaseSyntheticRecursiveLocked(ctx context.Context) {
	if d.isSynthetic() {
		d.decRefNoCaching()
		d.checkCachingLocked(ctx, true /* renameMuWriteLocked */)
	}
	if d.isDir() {
		var children []*dentry
		d.dirMu.Lock()
		for _, child := range d.children {
			children = append(children, child)
		}
		d.dirMu.Unlock()
		for _, child := range children {
			if child != nil {
				child.releaseSyntheticRecursiveLocked(ctx)
			}
		}
	}
}

// inoKey is the key used to identify the inode backed by this dentry.
//
// +stateify savable
type inoKey struct {
	ino      uint64
	devMinor uint32
	devMajor uint32
}

func inoKeyFromStat(stat *linux.Statx) inoKey {
	return inoKey{
		ino:      stat.Ino,
		devMinor: stat.DevMinor,
		devMajor: stat.DevMajor,
	}
}

// dentry implements vfs.DentryImpl.
//
// +stateify savable
type dentry struct {
	vfsd vfs.Dentry

	// refs is the reference count. Each dentry holds a reference on its
	// parent, even if disowned. An additional reference is held on all
	// synthetic dentries until they are unlinked or invalidated. When refs
	// reaches 0, the dentry may be added to the cache or destroyed. If refs ==
	// -1, the dentry has already been destroyed. refs is accessed using atomic
	// memory operations.
	refs int64

	// fs is the owning filesystem. fs is immutable.
	fs *filesystem

	// parent is this dentry's parent directory. Each dentry holds a reference
	// on its parent. If this dentry is a filesystem root, parent is nil.
	// parent is protected by filesystem.renameMu.
	parent *dentry

	// name is the name of this dentry in its parent. If this dentry is a
	// filesystem root, name is the empty string. name is protected by
	// filesystem.renameMu.
	name string

	// qidPath is the p9.QID.Path for this file. qidPath is immutable.
	qidPath uint64

	// inoKey is used to identify this dentry's inode.
	inoKey inoKey

	// file is the unopened p9.File that backs this dentry. file is immutable.
	//
	// If file.isNil(), this dentry represents a synthetic file, i.e. a file
	// that does not exist on the remote filesystem. As of this writing, the
	// only files that can be synthetic are sockets, pipes, and directories.
	file p9file `state:"nosave"`

	// controlFDLisa is used by lisafs to perform path based operations on this
	// dentry.
	//
	// if !controlFDLisa.Ok(), this dentry represents a synthetic file, i.e. a
	// file that does not exist on the remote filesystem. As of this writing, the
	// only files that can be synthetic are sockets, pipes, and directories.
	controlFDLisa lisafs.ClientFD `state:"nosave"`

	// If deleted is non-zero, the file represented by this dentry has been
	// deleted. deleted is accessed using atomic memory operations.
	deleted uint32

	// cachingMu is used to synchronize concurrent dentry caching attempts on
	// this dentry.
	cachingMu sync.Mutex `state:"nosave"`

	// If cached is true, dentryEntry links dentry into
	// filesystem.cachedDentries. cached and dentryEntry are protected by
	// cachingMu.
	cached bool
	dentryEntry

	dirMu sync.Mutex `state:"nosave"`

	// If this dentry represents a directory, children contains:
	//
	// - Mappings of child filenames to dentries representing those children.
	//
	// - Mappings of child filenames that are known not to exist to nil
	// dentries (only if InteropModeShared is not in effect and the directory
	// is not synthetic).
	//
	// children is protected by dirMu.
	children map[string]*dentry

	// If this dentry represents a directory, syntheticChildren is the number
	// of child dentries for which dentry.isSynthetic() == true.
	// syntheticChildren is protected by dirMu.
	syntheticChildren int

	// If this dentry represents a directory,
	// dentry.cachedMetadataAuthoritative() == true, and dirents is not nil, it
	// is a cache of all entries in the directory, in the order they were
	// returned by the server. dirents is protected by dirMu.
	dirents []vfs.Dirent

	// Cached metadata; protected by metadataMu.
	// To access:
	//   - In situations where consistency is not required (like stat), these
	//     can be accessed using atomic operations only (without locking).
	//   - Lock metadataMu and can access without atomic operations.
	// To mutate:
	//   - Lock metadataMu and use atomic operations to update because we might
	//     have atomic readers that don't hold the lock.
	metadataMu sync.Mutex `state:"nosave"`
	ino        uint64     // immutable
	mode       uint32     // type is immutable, perms are mutable
	uid        uint32     // auth.KUID, but stored as raw uint32 for sync/atomic
	gid        uint32     // auth.KGID, but ...
	blockSize  uint32     // 0 if unknown
	// Timestamps, all nsecs from the Unix epoch.
	atime int64
	mtime int64
	ctime int64
	btime int64
	// File size, which differs from other metadata in two ways:
	//
	// - We make a best-effort attempt to keep it up to date even if
	// !dentry.cachedMetadataAuthoritative() for the sake of O_APPEND writes.
	//
	// - size is protected by both metadataMu and dataMu (i.e. both must be
	// locked to mutate it; locking either is sufficient to access it).
	size uint64
	// If this dentry does not represent a synthetic file, deleted is 0, and
	// atimeDirty/mtimeDirty are non-zero, atime/mtime may have diverged from the
	// remote file's timestamps, which should be updated when this dentry is
	// evicted.
	atimeDirty uint32
	mtimeDirty uint32

	// nlink counts the number of hard links to this dentry. It's updated and
	// accessed using atomic operations. It's not protected by metadataMu like the
	// other metadata fields.
	nlink uint32

	mapsMu sync.Mutex `state:"nosave"`

	// If this dentry represents a regular file, mappings tracks mappings of
	// the file into memmap.MappingSpaces. mappings is protected by mapsMu.
	mappings memmap.MappingSet

	// - If this dentry represents a regular file or directory, readFile is the
	// p9.File used for reads by all regularFileFDs/directoryFDs representing
	// this dentry, and readFD (if not -1) is a host FD equivalent to readFile
	// used as a faster alternative.
	//
	// - If this dentry represents a regular file, writeFile is the p9.File
	// used for writes by all regularFileFDs representing this dentry, and
	// writeFD (if not -1) is a host FD equivalent to writeFile used as a
	// faster alternative.
	//
	// - If this dentry represents a regular file, mmapFD is the host FD used
	// for memory mappings. If mmapFD is -1, no such FD is available, and the
	// internal page cache implementation is used for memory mappings instead.
	//
	// These fields are protected by handleMu. readFD, writeFD, and mmapFD are
	// additionally written using atomic memory operations, allowing them to be
	// read (albeit racily) with atomic.LoadInt32() without locking handleMu.
	//
	// readFile and writeFile may or may not represent the same p9.File. Once
	// either p9.File transitions from closed (isNil() == true) to open
	// (isNil() == false), it may be mutated with handleMu locked, but cannot
	// be closed until the dentry is destroyed.
	//
	// readFD and writeFD may or may not be the same file descriptor. mmapFD is
	// always either -1 or equal to readFD; if !writeFile.isNil() (the file has
	// been opened for writing), it is additionally either -1 or equal to
	// writeFD.
	handleMu    sync.RWMutex    `state:"nosave"`
	readFile    p9file          `state:"nosave"`
	writeFile   p9file          `state:"nosave"`
	readFDLisa  lisafs.ClientFD `state:"nosave"`
	writeFDLisa lisafs.ClientFD `state:"nosave"`
	readFD      int32           `state:"nosave"`
	writeFD     int32           `state:"nosave"`
	mmapFD      int32           `state:"nosave"`

	dataMu sync.RWMutex `state:"nosave"`

	// If this dentry represents a regular file that is client-cached, cache
	// maps offsets into the cached file to offsets into
	// filesystem.mfp.MemoryFile() that store the file's data. cache is
	// protected by dataMu.
	cache fsutil.FileRangeSet

	// If this dentry represents a regular file that is client-cached, dirty
	// tracks dirty segments in cache. dirty is protected by dataMu.
	dirty fsutil.DirtySet

	// pf implements platform.File for mappings of hostFD.
	pf dentryPlatformFile

	// If this dentry represents a symbolic link, InteropModeShared is not in
	// effect, and haveTarget is true, target is the symlink target. haveTarget
	// and target are protected by dataMu.
	haveTarget bool
	target     string

	// If this dentry represents a synthetic socket file, endpoint is the
	// transport endpoint bound to this file.
	endpoint transport.BoundEndpoint

	// If this dentry represents a synthetic named pipe, pipe is the pipe
	// endpoint bound to this file.
	pipe *pipe.VFSPipe

	locks vfs.FileLocks

	// Inotify watches for this dentry.
	//
	// Note that inotify may behave unexpectedly in the presence of hard links,
	// because dentries corresponding to the same file have separate inotify
	// watches when they should share the same set. This is the case because it is
	// impossible for us to know for sure whether two dentries correspond to the
	// same underlying file (see the gofer filesystem section fo vfs/inotify.md for
	// a more in-depth discussion on this matter).
	watches vfs.Watches
}

// dentryAttrMask returns a p9.AttrMask enabling all attributes used by the
// gofer client.
func dentryAttrMask() p9.AttrMask {
	return p9.AttrMask{
		Mode:  true,
		UID:   true,
		GID:   true,
		ATime: true,
		MTime: true,
		CTime: true,
		Size:  true,
		BTime: true,
	}
}

// newDentry creates a new dentry representing the given file. The dentry
// initially has no references, but is not cached; it is the caller's
// responsibility to set the dentry's reference count and/or call
// dentry.checkCachingLocked() as appropriate.
//
// Preconditions: !file.isNil().
func (fs *filesystem) newDentry(ctx context.Context, file p9file, qid p9.QID, mask p9.AttrMask, attr *p9.Attr) (*dentry, error) {
	if !mask.Mode {
		ctx.Warningf("can't create gofer.dentry without file type")
		return nil, linuxerr.EIO
	}
	if attr.Mode.FileType() == p9.ModeRegular && !mask.Size {
		ctx.Warningf("can't create regular file gofer.dentry without file size")
		return nil, linuxerr.EIO
	}

	d := &dentry{
		fs:        fs,
		qidPath:   qid.Path,
		file:      file,
		ino:       fs.inoFromQIDPath(qid.Path),
		mode:      uint32(attr.Mode),
		uid:       uint32(fs.opts.dfltuid),
		gid:       uint32(fs.opts.dfltgid),
		blockSize: hostarch.PageSize,
		readFD:    -1,
		writeFD:   -1,
		mmapFD:    -1,
	}
	d.pf.dentry = d
	if mask.UID {
		d.uid = dentryUIDFromP9UID(attr.UID)
	}
	if mask.GID {
		d.gid = dentryGIDFromP9GID(attr.GID)
	}
	if mask.Size {
		d.size = attr.Size
	}
	if attr.BlockSize != 0 {
		d.blockSize = uint32(attr.BlockSize)
	}
	if mask.ATime {
		d.atime = dentryTimestampFromP9(attr.ATimeSeconds, attr.ATimeNanoSeconds)
	}
	if mask.MTime {
		d.mtime = dentryTimestampFromP9(attr.MTimeSeconds, attr.MTimeNanoSeconds)
	}
	if mask.CTime {
		d.ctime = dentryTimestampFromP9(attr.CTimeSeconds, attr.CTimeNanoSeconds)
	}
	if mask.BTime {
		d.btime = dentryTimestampFromP9(attr.BTimeSeconds, attr.BTimeNanoSeconds)
	}
	if mask.NLink {
		d.nlink = uint32(attr.NLink)
	}
	d.vfsd.Init(d)
	refsvfs2.Register(d)
	fs.syncMu.Lock()
	fs.syncableDentries[d] = struct{}{}
	fs.syncMu.Unlock()
	return d, nil
}

func (fs *filesystem) newDentryLisa(ctx context.Context, ino *lisafs.Inode) (*dentry, error) {
	if ino.Stat.Mask&linux.STATX_TYPE == 0 {
		ctx.Warningf("can't create gofer.dentry without file type")
		return nil, linuxerr.EIO
	}
	if ino.Stat.Mode&linux.FileTypeMask == linux.ModeRegular && ino.Stat.Mask&linux.STATX_SIZE == 0 {
		ctx.Warningf("can't create regular file gofer.dentry without file size")
		return nil, linuxerr.EIO
	}

	inoKey := inoKeyFromStat(&ino.Stat)
	d := &dentry{
		fs:            fs,
		inoKey:        inoKey,
		ino:           fs.inoFromKey(inoKey),
		mode:          uint32(ino.Stat.Mode),
		uid:           uint32(fs.opts.dfltuid),
		gid:           uint32(fs.opts.dfltgid),
		blockSize:     hostarch.PageSize,
		readFD:        -1,
		writeFD:       -1,
		mmapFD:        -1,
		controlFDLisa: fs.clientLisa.NewFD(ino.ControlFD),
	}

	d.pf.dentry = d
	if ino.Stat.Mask&linux.STATX_UID != 0 {
		d.uid = dentryUIDFromLisaUID(lisafs.UID(ino.Stat.UID))
	}
	if ino.Stat.Mask&linux.STATX_GID != 0 {
		d.gid = dentryGIDFromLisaGID(lisafs.GID(ino.Stat.GID))
	}
	if ino.Stat.Mask&linux.STATX_SIZE != 0 {
		d.size = ino.Stat.Size
	}
	if ino.Stat.Blksize != 0 {
		d.blockSize = ino.Stat.Blksize
	}
	if ino.Stat.Mask&linux.STATX_ATIME != 0 {
		d.atime = dentryTimestampFromLisa(ino.Stat.Atime)
	}
	if ino.Stat.Mask&linux.STATX_MTIME != 0 {
		d.mtime = dentryTimestampFromLisa(ino.Stat.Mtime)
	}
	if ino.Stat.Mask&linux.STATX_CTIME != 0 {
		d.ctime = dentryTimestampFromLisa(ino.Stat.Ctime)
	}
	if ino.Stat.Mask&linux.STATX_BTIME != 0 {
		d.btime = dentryTimestampFromLisa(ino.Stat.Btime)
	}
	if ino.Stat.Mask&linux.STATX_NLINK != 0 {
		d.nlink = ino.Stat.Nlink
	}
	d.vfsd.Init(d)
	refsvfs2.Register(d)
	fs.syncMu.Lock()
	fs.syncableDentries[d] = struct{}{}
	fs.syncMu.Unlock()
	return d, nil
}

func (fs *filesystem) inoFromKey(key inoKey) uint64 {
	fs.inoMu.Lock()
	defer fs.inoMu.Unlock()

	if ino, ok := fs.inoByKey[key]; ok {
		return ino
	}
	ino := fs.nextIno()
	fs.inoByKey[key] = ino
	return ino
}

func (fs *filesystem) inoFromQIDPath(qidPath uint64) uint64 {
	fs.inoMu.Lock()
	defer fs.inoMu.Unlock()
	if ino, ok := fs.inoByQIDPath[qidPath]; ok {
		return ino
	}
	ino := fs.nextIno()
	fs.inoByQIDPath[qidPath] = ino
	return ino
}

func (fs *filesystem) nextIno() uint64 {
	return atomic.AddUint64(&fs.lastIno, 1)
}

func (d *dentry) isSynthetic() bool {
	return !d.isControlFileOk()
}

func (d *dentry) cachedMetadataAuthoritative() bool {
	return d.fs.opts.interop != InteropModeShared || d.isSynthetic()
}

// updateFromP9Attrs is called to update d's metadata after an update from the
// remote filesystem.
// Precondition: d.metadataMu must be locked.
// +checklocks:d.metadataMu
func (d *dentry) updateFromP9AttrsLocked(mask p9.AttrMask, attr *p9.Attr) {
	if mask.Mode {
		if got, want := uint32(attr.Mode.FileType()), d.fileType(); got != want {
			panic(fmt.Sprintf("gofer.dentry file type changed from %#o to %#o", want, got))
		}
		atomic.StoreUint32(&d.mode, uint32(attr.Mode))
	}
	if mask.UID {
		atomic.StoreUint32(&d.uid, dentryUIDFromP9UID(attr.UID))
	}
	if mask.GID {
		atomic.StoreUint32(&d.gid, dentryGIDFromP9GID(attr.GID))
	}
	// There is no P9_GETATTR_* bit for I/O block size.
	if attr.BlockSize != 0 {
		atomic.StoreUint32(&d.blockSize, uint32(attr.BlockSize))
	}
	// Don't override newer client-defined timestamps with old server-defined
	// ones.
	if mask.ATime && atomic.LoadUint32(&d.atimeDirty) == 0 {
		atomic.StoreInt64(&d.atime, dentryTimestampFromP9(attr.ATimeSeconds, attr.ATimeNanoSeconds))
	}
	if mask.MTime && atomic.LoadUint32(&d.mtimeDirty) == 0 {
		atomic.StoreInt64(&d.mtime, dentryTimestampFromP9(attr.MTimeSeconds, attr.MTimeNanoSeconds))
	}
	if mask.CTime {
		atomic.StoreInt64(&d.ctime, dentryTimestampFromP9(attr.CTimeSeconds, attr.CTimeNanoSeconds))
	}
	if mask.BTime {
		atomic.StoreInt64(&d.btime, dentryTimestampFromP9(attr.BTimeSeconds, attr.BTimeNanoSeconds))
	}
	if mask.NLink {
		atomic.StoreUint32(&d.nlink, uint32(attr.NLink))
	}
	if mask.Size {
		d.updateSizeLocked(attr.Size)
	}
}

// updateFromLisaStatLocked is called to update d's metadata after an update
// from the remote filesystem.
// Precondition: d.metadataMu must be locked.
// +checklocks:d.metadataMu
func (d *dentry) updateFromLisaStatLocked(stat *linux.Statx) {
	if stat.Mask&linux.STATX_TYPE != 0 {
		if got, want := stat.Mode&linux.FileTypeMask, d.fileType(); uint32(got) != want {
			panic(fmt.Sprintf("gofer.dentry file type changed from %#o to %#o", want, got))
		}
	}
	if stat.Mask&linux.STATX_MODE != 0 {
		atomic.StoreUint32(&d.mode, uint32(stat.Mode))
	}
	if stat.Mask&linux.STATX_UID != 0 {
		atomic.StoreUint32(&d.uid, dentryUIDFromLisaUID(lisafs.UID(stat.UID)))
	}
	if stat.Mask&linux.STATX_GID != 0 {
		atomic.StoreUint32(&d.uid, dentryGIDFromLisaGID(lisafs.GID(stat.GID)))
	}
	if stat.Blksize != 0 {
		atomic.StoreUint32(&d.blockSize, stat.Blksize)
	}
	// Don't override newer client-defined timestamps with old server-defined
	// ones.
	if stat.Mask&linux.STATX_ATIME != 0 && atomic.LoadUint32(&d.atimeDirty) == 0 {
		atomic.StoreInt64(&d.atime, dentryTimestampFromLisa(stat.Atime))
	}
	if stat.Mask&linux.STATX_MTIME != 0 && atomic.LoadUint32(&d.mtimeDirty) == 0 {
		atomic.StoreInt64(&d.mtime, dentryTimestampFromLisa(stat.Mtime))
	}
	if stat.Mask&linux.STATX_CTIME != 0 {
		atomic.StoreInt64(&d.ctime, dentryTimestampFromLisa(stat.Ctime))
	}
	if stat.Mask&linux.STATX_BTIME != 0 {
		atomic.StoreInt64(&d.btime, dentryTimestampFromLisa(stat.Btime))
	}
	if stat.Mask&linux.STATX_NLINK != 0 {
		atomic.StoreUint32(&d.nlink, stat.Nlink)
	}
	if stat.Mask&linux.STATX_SIZE != 0 {
		d.updateSizeLocked(stat.Size)
	}
}

// Preconditions: !d.isSynthetic().
// Preconditions: d.metadataMu is locked.
// +checklocks:d.metadataMu
func (d *dentry) refreshSizeLocked(ctx context.Context) error {
	d.handleMu.RLock()

	if d.writeFD < 0 {
		d.handleMu.RUnlock()
		// Ask the gofer if we don't have a host FD.
		if d.fs.opts.lisaEnabled {
			return d.updateFromStatLisaLocked(ctx, nil)
		}
		return d.updateFromGetattrLocked(ctx, p9file{})
	}

	var stat unix.Statx_t
	err := unix.Statx(int(d.writeFD), "", unix.AT_EMPTY_PATH, unix.STATX_SIZE, &stat)
	d.handleMu.RUnlock() // must be released before updateSizeLocked()
	if err != nil {
		return err
	}
	d.updateSizeLocked(stat.Size)
	return nil
}

// Preconditions: !d.isSynthetic().
func (d *dentry) updateFromGetattr(ctx context.Context) error {
	// d.metadataMu must be locked *before* we getAttr so that we do not end up
	// updating stale attributes in d.updateFromP9AttrsLocked().
	d.metadataMu.Lock()
	defer d.metadataMu.Unlock()
	if d.fs.opts.lisaEnabled {
		return d.updateFromStatLisaLocked(ctx, nil)
	}
	return d.updateFromGetattrLocked(ctx, p9file{})
}

// Preconditions:
// * !d.isSynthetic().
// * d.metadataMu is locked.
// +checklocks:d.metadataMu
func (d *dentry) updateFromStatLisaLocked(ctx context.Context, fdLisa *lisafs.ClientFD) error {
	handleMuRLocked := false
	if fdLisa == nil {
		// Use open FDs in preferenece to the control FD. This may be significantly
		// more efficient in some implementations. Prefer a writable FD over a
		// readable one since some filesystem implementations may update a writable
		// FD's metadata after writes, without making metadata updates immediately
		// visible to read-only FDs representing the same file.
		d.handleMu.RLock()
		switch {
		case d.writeFDLisa.Ok():
			fdLisa = &d.writeFDLisa
			handleMuRLocked = true
		case d.readFDLisa.Ok():
			fdLisa = &d.readFDLisa
			handleMuRLocked = true
		default:
			fdLisa = &d.controlFDLisa
			d.handleMu.RUnlock()
		}
	}

	var stat linux.Statx
	err := fdLisa.StatTo(ctx, &stat)
	if handleMuRLocked {
		// handleMu must be released before updateFromLisaStatLocked().
		d.handleMu.RUnlock() // +checklocksforce: complex case.
	}
	if err != nil {
		return err
	}
	d.updateFromLisaStatLocked(&stat)
	return nil
}

// Preconditions:
// * !d.isSynthetic().
// * d.metadataMu is locked.
// +checklocks:d.metadataMu
func (d *dentry) updateFromGetattrLocked(ctx context.Context, file p9file) error {
	handleMuRLocked := false
	if file.isNil() {
		// Use d.readFile or d.writeFile, which represent 9P FIDs that have
		// been opened, in preference to d.file, which represents a 9P fid that
		// has not. This may be significantly more efficient in some
		// implementations. Prefer d.writeFile over d.readFile since some
		// filesystem implementations may update a writable handle's metadata
		// after writes to that handle, without making metadata updates
		// immediately visible to read-only handles representing the same file.
		d.handleMu.RLock()
		switch {
		case !d.writeFile.isNil():
			file = d.writeFile
			handleMuRLocked = true
		case !d.readFile.isNil():
			file = d.readFile
			handleMuRLocked = true
		default:
			file = d.file
			d.handleMu.RUnlock()
		}
	}

	_, attrMask, attr, err := file.getAttr(ctx, dentryAttrMask())
	if handleMuRLocked {
		// handleMu must be released before updateFromP9AttrsLocked().
		d.handleMu.RUnlock() // +checklocksforce: complex case.
	}
	if err != nil {
		return err
	}
	d.updateFromP9AttrsLocked(attrMask, &attr)
	return nil
}

func (d *dentry) fileType() uint32 {
	return atomic.LoadUint32(&d.mode) & linux.S_IFMT
}

func (d *dentry) statTo(stat *linux.Statx) {
	stat.Mask = linux.STATX_TYPE | linux.STATX_MODE | linux.STATX_NLINK | linux.STATX_UID | linux.STATX_GID | linux.STATX_ATIME | linux.STATX_MTIME | linux.STATX_CTIME | linux.STATX_INO | linux.STATX_SIZE | linux.STATX_BLOCKS | linux.STATX_BTIME
	stat.Blksize = atomic.LoadUint32(&d.blockSize)
	stat.Nlink = atomic.LoadUint32(&d.nlink)
	if stat.Nlink == 0 {
		// The remote filesystem doesn't support link count; just make
		// something up. This is consistent with Linux, where
		// fs/inode.c:inode_init_always() initializes link count to 1, and
		// fs/9p/vfs_inode_dotl.c:v9fs_stat2inode_dotl() doesn't touch it if
		// it's not provided by the remote filesystem.
		stat.Nlink = 1
	}
	stat.UID = atomic.LoadUint32(&d.uid)
	stat.GID = atomic.LoadUint32(&d.gid)
	stat.Mode = uint16(atomic.LoadUint32(&d.mode))
	stat.Ino = uint64(d.ino)
	stat.Size = atomic.LoadUint64(&d.size)
	// This is consistent with regularFileFD.Seek(), which treats regular files
	// as having no holes.
	stat.Blocks = (stat.Size + 511) / 512
	stat.Atime = linux.NsecToStatxTimestamp(atomic.LoadInt64(&d.atime))
	stat.Btime = linux.NsecToStatxTimestamp(atomic.LoadInt64(&d.btime))
	stat.Ctime = linux.NsecToStatxTimestamp(atomic.LoadInt64(&d.ctime))
	stat.Mtime = linux.NsecToStatxTimestamp(atomic.LoadInt64(&d.mtime))
	stat.DevMajor = linux.UNNAMED_MAJOR
	stat.DevMinor = d.fs.devMinor
}

func (d *dentry) setStat(ctx context.Context, creds *auth.Credentials, opts *vfs.SetStatOptions, mnt *vfs.Mount) error {
	stat := &opts.Stat
	if stat.Mask == 0 {
		return nil
	}
	if stat.Mask&^(linux.STATX_MODE|linux.STATX_UID|linux.STATX_GID|linux.STATX_ATIME|linux.STATX_MTIME|linux.STATX_SIZE) != 0 {
		return linuxerr.EPERM
	}
	mode := linux.FileMode(atomic.LoadUint32(&d.mode))
	if err := vfs.CheckSetStat(ctx, creds, opts, mode, auth.KUID(atomic.LoadUint32(&d.uid)), auth.KGID(atomic.LoadUint32(&d.gid))); err != nil {
		return err
	}
	if err := mnt.CheckBeginWrite(); err != nil {
		return err
	}
	defer mnt.EndWrite()

	if stat.Mask&linux.STATX_SIZE != 0 {
		// Reject attempts to truncate files other than regular files, since
		// filesystem implementations may return the wrong errno.
		switch mode.FileType() {
		case linux.S_IFREG:
			// ok
		case linux.S_IFDIR:
			return linuxerr.EISDIR
		default:
			return linuxerr.EINVAL
		}
	}

	var now int64
	if d.cachedMetadataAuthoritative() {
		// Truncate updates mtime.
		if stat.Mask&(linux.STATX_SIZE|linux.STATX_MTIME) == linux.STATX_SIZE {
			stat.Mask |= linux.STATX_MTIME
			stat.Mtime = linux.StatxTimestamp{
				Nsec: linux.UTIME_NOW,
			}
		}

		// Use client clocks for timestamps.
		now = d.fs.clock.Now().Nanoseconds()
		if stat.Mask&linux.STATX_ATIME != 0 && stat.Atime.Nsec == linux.UTIME_NOW {
			stat.Atime = linux.NsecToStatxTimestamp(now)
		}
		if stat.Mask&linux.STATX_MTIME != 0 && stat.Mtime.Nsec == linux.UTIME_NOW {
			stat.Mtime = linux.NsecToStatxTimestamp(now)
		}
	}

	d.metadataMu.Lock()
	defer d.metadataMu.Unlock()

	// As with Linux, if the UID, GID, or file size is changing, we have to
	// clear permission bits. Note that when set, clearSGID may cause
	// permissions to be updated.
	clearSGID := (stat.Mask&linux.STATX_UID != 0 && stat.UID != atomic.LoadUint32(&d.uid)) ||
		(stat.Mask&linux.STATX_GID != 0 && stat.GID != atomic.LoadUint32(&d.gid)) ||
		stat.Mask&linux.STATX_SIZE != 0
	if clearSGID {
		if stat.Mask&linux.STATX_MODE != 0 {
			stat.Mode = uint16(vfs.ClearSUIDAndSGID(uint32(stat.Mode)))
		} else {
			oldMode := atomic.LoadUint32(&d.mode)
			if updatedMode := vfs.ClearSUIDAndSGID(oldMode); updatedMode != oldMode {
				stat.Mode = uint16(updatedMode)
				stat.Mask |= linux.STATX_MODE
			}
		}
	}

	// failureMask indicates which attributes could not be set on the remote
	// filesystem. p9 returns an error if any of the attributes could not be set
	// but that leads to inconsistency as the server could have set a few
	// attributes successfully but a later failure will cause the successful ones
	// to not be updated in the dentry cache.
	var failureMask uint32
	var failureErr error
	if !d.isSynthetic() {
		if stat.Mask != 0 {
			if stat.Mask&linux.STATX_SIZE != 0 {
				// d.dataMu must be held around the update to both the remote
				// file's size and d.size to serialize with writeback (which
				// might otherwise write data back up to the old d.size after
				// the remote file has been truncated).
				d.dataMu.Lock()
			}
			if d.fs.opts.lisaEnabled {
				var err error
				failureMask, failureErr, err = d.controlFDLisa.SetStat(ctx, stat)
				if err != nil {
					if stat.Mask&linux.STATX_SIZE != 0 {
						d.dataMu.Unlock() // +checklocksforce: locked conditionally above
					}
					return err
				}
			} else {
				if err := d.file.setAttr(ctx, p9.SetAttrMask{
					Permissions:        stat.Mask&linux.STATX_MODE != 0,
					UID:                stat.Mask&linux.STATX_UID != 0,
					GID:                stat.Mask&linux.STATX_GID != 0,
					Size:               stat.Mask&linux.STATX_SIZE != 0,
					ATime:              stat.Mask&linux.STATX_ATIME != 0,
					MTime:              stat.Mask&linux.STATX_MTIME != 0,
					ATimeNotSystemTime: stat.Mask&linux.STATX_ATIME != 0 && stat.Atime.Nsec != linux.UTIME_NOW,
					MTimeNotSystemTime: stat.Mask&linux.STATX_MTIME != 0 && stat.Mtime.Nsec != linux.UTIME_NOW,
				}, p9.SetAttr{
					Permissions:      p9.FileMode(stat.Mode),
					UID:              p9.UID(stat.UID),
					GID:              p9.GID(stat.GID),
					Size:             stat.Size,
					ATimeSeconds:     uint64(stat.Atime.Sec),
					ATimeNanoSeconds: uint64(stat.Atime.Nsec),
					MTimeSeconds:     uint64(stat.Mtime.Sec),
					MTimeNanoSeconds: uint64(stat.Mtime.Nsec),
				}); err != nil {
					if stat.Mask&linux.STATX_SIZE != 0 {
						d.dataMu.Unlock() // +checklocksforce: locked conditionally above
					}
					return err
				}
			}
			if stat.Mask&linux.STATX_SIZE != 0 {
				if failureMask&linux.STATX_SIZE == 0 {
					// d.size should be kept up to date, and privatized
					// copy-on-write mappings of truncated pages need to be
					// invalidated, even if InteropModeShared is in effect.
					d.updateSizeAndUnlockDataMuLocked(stat.Size) // +checklocksforce: locked conditionally above
				} else {
					d.dataMu.Unlock() // +checklocksforce: locked conditionally above
				}
			}
		}
		if d.fs.opts.interop == InteropModeShared {
			// There's no point to updating d's metadata in this case since
			// it'll be overwritten by revalidation before the next time it's
			// used anyway. (InteropModeShared inhibits client caching of
			// regular file data, so there's no cache to truncate either.)
			return nil
		}
	}
	if stat.Mask&linux.STATX_MODE != 0 && failureMask&linux.STATX_MODE == 0 {
		atomic.StoreUint32(&d.mode, d.fileType()|uint32(stat.Mode))
	}
	if stat.Mask&linux.STATX_UID != 0 && failureMask&linux.STATX_UID == 0 {
		atomic.StoreUint32(&d.uid, stat.UID)
	}
	if stat.Mask&linux.STATX_GID != 0 && failureMask&linux.STATX_GID == 0 {
		atomic.StoreUint32(&d.gid, stat.GID)
	}
	// Note that stat.Atime.Nsec and stat.Mtime.Nsec can't be UTIME_NOW because
	// if d.cachedMetadataAuthoritative() then we converted stat.Atime and
	// stat.Mtime to client-local timestamps above, and if
	// !d.cachedMetadataAuthoritative() then we returned after calling
	// d.file.setAttr(). For the same reason, now must have been initialized.
	if stat.Mask&linux.STATX_ATIME != 0 && failureMask&linux.STATX_ATIME == 0 {
		atomic.StoreInt64(&d.atime, stat.Atime.ToNsec())
		atomic.StoreUint32(&d.atimeDirty, 0)
	}
	if stat.Mask&linux.STATX_MTIME != 0 && failureMask&linux.STATX_MTIME == 0 {
		atomic.StoreInt64(&d.mtime, stat.Mtime.ToNsec())
		atomic.StoreUint32(&d.mtimeDirty, 0)
	}
	atomic.StoreInt64(&d.ctime, now)
	if failureMask != 0 {
		// Setting some attribute failed on the remote filesystem.
		return failureErr
	}
	return nil
}

// doAllocate performs an allocate operation on d. Note that d.metadataMu will
// be held when allocate is called.
func (d *dentry) doAllocate(ctx context.Context, offset, length uint64, allocate func() error) error {
	d.metadataMu.Lock()
	defer d.metadataMu.Unlock()

	// Allocating a smaller size is a noop.
	size := offset + length
	if d.cachedMetadataAuthoritative() && size <= d.size {
		return nil
	}

	err := allocate()
	if err != nil {
		return err
	}
	d.updateSizeLocked(size)
	if d.cachedMetadataAuthoritative() {
		d.touchCMtimeLocked()
	}
	return nil
}

// Preconditions: d.metadataMu must be locked.
func (d *dentry) updateSizeLocked(newSize uint64) {
	d.dataMu.Lock()
	d.updateSizeAndUnlockDataMuLocked(newSize)
}

// Preconditions: d.metadataMu and d.dataMu must be locked.
//
// Postconditions: d.dataMu is unlocked.
// +checklocksrelease:d.dataMu
func (d *dentry) updateSizeAndUnlockDataMuLocked(newSize uint64) {
	oldSize := d.size
	atomic.StoreUint64(&d.size, newSize)
	// d.dataMu must be unlocked to lock d.mapsMu and invalidate mappings
	// below. This allows concurrent calls to Read/Translate/etc. These
	// functions synchronize with truncation by refusing to use cache
	// contents beyond the new d.size. (We are still holding d.metadataMu,
	// so we can't race with Write or another truncate.)
	d.dataMu.Unlock()
	if newSize < oldSize {
		oldpgend, _ := hostarch.PageRoundUp(oldSize)
		newpgend, _ := hostarch.PageRoundUp(newSize)
		if oldpgend != newpgend {
			d.mapsMu.Lock()
			d.mappings.Invalidate(memmap.MappableRange{newpgend, oldpgend}, memmap.InvalidateOpts{
				// Compare Linux's mm/truncate.c:truncate_setsize() =>
				// truncate_pagecache() =>
				// mm/memory.c:unmap_mapping_range(evencows=1).
				InvalidatePrivate: true,
			})
			d.mapsMu.Unlock()
		}
		// We are now guaranteed that there are no translations of
		// truncated pages, and can remove them from the cache. Since
		// truncated pages have been removed from the remote file, they
		// should be dropped without being written back.
		d.dataMu.Lock()
		d.cache.Truncate(newSize, d.fs.mfp.MemoryFile())
		d.dirty.KeepClean(memmap.MappableRange{newSize, oldpgend})
		d.dataMu.Unlock()
	}
}

func (d *dentry) checkPermissions(creds *auth.Credentials, ats vfs.AccessTypes) error {
	return vfs.GenericCheckPermissions(creds, ats, linux.FileMode(atomic.LoadUint32(&d.mode)), auth.KUID(atomic.LoadUint32(&d.uid)), auth.KGID(atomic.LoadUint32(&d.gid)))
}

func (d *dentry) checkXattrPermissions(creds *auth.Credentials, name string, ats vfs.AccessTypes) error {
	// Deny access to the "security" and "system" namespaces since applications
	// may expect these to affect kernel behavior in unimplemented ways
	// (b/148380782). Allow all other extended attributes to be passed through
	// to the remote filesystem. This is inconsistent with Linux's 9p client,
	// but consistent with other filesystems (e.g. FUSE).
	if strings.HasPrefix(name, linux.XATTR_SECURITY_PREFIX) || strings.HasPrefix(name, linux.XATTR_SYSTEM_PREFIX) {
		return linuxerr.EOPNOTSUPP
	}
	mode := linux.FileMode(atomic.LoadUint32(&d.mode))
	kuid := auth.KUID(atomic.LoadUint32(&d.uid))
	kgid := auth.KGID(atomic.LoadUint32(&d.gid))
	if err := vfs.GenericCheckPermissions(creds, ats, mode, kuid, kgid); err != nil {
		return err
	}
	return vfs.CheckXattrPermissions(creds, ats, mode, kuid, name)
}

func (d *dentry) mayDelete(creds *auth.Credentials, child *dentry) error {
	return vfs.CheckDeleteSticky(
		creds,
		linux.FileMode(atomic.LoadUint32(&d.mode)),
		auth.KUID(atomic.LoadUint32(&d.uid)),
		auth.KUID(atomic.LoadUint32(&child.uid)),
		auth.KGID(atomic.LoadUint32(&child.gid)),
	)
}

func dentryUIDFromP9UID(uid p9.UID) uint32 {
	if !uid.Ok() {
		return uint32(auth.OverflowUID)
	}
	return uint32(uid)
}

func dentryGIDFromP9GID(gid p9.GID) uint32 {
	if !gid.Ok() {
		return uint32(auth.OverflowGID)
	}
	return uint32(gid)
}

func dentryUIDFromLisaUID(uid lisafs.UID) uint32 {
	if !uid.Ok() {
		return uint32(auth.OverflowUID)
	}
	return uint32(uid)
}

func dentryGIDFromLisaGID(gid lisafs.GID) uint32 {
	if !gid.Ok() {
		return uint32(auth.OverflowGID)
	}
	return uint32(gid)
}

// IncRef implements vfs.DentryImpl.IncRef.
func (d *dentry) IncRef() {
	// d.refs may be 0 if d.fs.renameMu is locked, which serializes against
	// d.checkCachingLocked().
	r := atomic.AddInt64(&d.refs, 1)
	if d.LogRefs() {
		refsvfs2.LogIncRef(d, r)
	}
}

// TryIncRef implements vfs.DentryImpl.TryIncRef.
func (d *dentry) TryIncRef() bool {
	for {
		r := atomic.LoadInt64(&d.refs)
		if r <= 0 {
			return false
		}
		if atomic.CompareAndSwapInt64(&d.refs, r, r+1) {
			if d.LogRefs() {
				refsvfs2.LogTryIncRef(d, r+1)
			}
			return true
		}
	}
}

// DecRef implements vfs.DentryImpl.DecRef.
func (d *dentry) DecRef(ctx context.Context) {
	if d.decRefNoCaching() == 0 {
		d.checkCachingLocked(ctx, false /* renameMuWriteLocked */)
	}
}

// decRefNoCaching decrements d's reference count without calling
// d.checkCachingLocked, even if d's reference count reaches 0; callers are
// responsible for ensuring that d.checkCachingLocked will be called later.
func (d *dentry) decRefNoCaching() int64 {
	r := atomic.AddInt64(&d.refs, -1)
	if d.LogRefs() {
		refsvfs2.LogDecRef(d, r)
	}
	if r < 0 {
		panic("gofer.dentry.decRefNoCaching() called without holding a reference")
	}
	return r
}

// RefType implements refsvfs2.CheckedObject.Type.
func (d *dentry) RefType() string {
	return "gofer.dentry"
}

// LeakMessage implements refsvfs2.CheckedObject.LeakMessage.
func (d *dentry) LeakMessage() string {
	return fmt.Sprintf("[gofer.dentry %p] reference count of %d instead of -1", d, atomic.LoadInt64(&d.refs))
}

// LogRefs implements refsvfs2.CheckedObject.LogRefs.
//
// This should only be set to true for debugging purposes, as it can generate an
// extremely large amount of output and drastically degrade performance.
func (d *dentry) LogRefs() bool {
	return false
}

// InotifyWithParent implements vfs.DentryImpl.InotifyWithParent.
func (d *dentry) InotifyWithParent(ctx context.Context, events, cookie uint32, et vfs.EventType) {
	if d.isDir() {
		events |= linux.IN_ISDIR
	}

	d.fs.renameMu.RLock()
	// The ordering below is important, Linux always notifies the parent first.
	if d.parent != nil {
		d.parent.watches.Notify(ctx, d.name, events, cookie, et, d.isDeleted())
	}
	d.watches.Notify(ctx, "", events, cookie, et, d.isDeleted())
	d.fs.renameMu.RUnlock()
}

// Watches implements vfs.DentryImpl.Watches.
func (d *dentry) Watches() *vfs.Watches {
	return &d.watches
}

// OnZeroWatches implements vfs.DentryImpl.OnZeroWatches.
//
// If no watches are left on this dentry and it has no references, cache it.
func (d *dentry) OnZeroWatches(ctx context.Context) {
	d.checkCachingLocked(ctx, false /* renameMuWriteLocked */)
}

// checkCachingLocked should be called after d's reference count becomes 0 or
// it becomes disowned.
//
// For performance, checkCachingLocked can also be called after d's reference
// count becomes non-zero, so that d can be removed from the LRU cache. This
// may help in reducing the size of the cache and hence reduce evictions. Note
// that this is not necessary for correctness.
//
// It may be called on a destroyed dentry. For example,
// renameMu[R]UnlockAndCheckCaching may call checkCachingLocked multiple times
// for the same dentry when the dentry is visited more than once in the same
// operation. One of the calls may destroy the dentry, so subsequent calls will
// do nothing.
//
// Preconditions: d.fs.renameMu must be locked for writing if
// renameMuWriteLocked is true; it may be temporarily unlocked.
func (d *dentry) checkCachingLocked(ctx context.Context, renameMuWriteLocked bool) {
	d.cachingMu.Lock()
	refs := atomic.LoadInt64(&d.refs)
	if refs == -1 {
		// Dentry has already been destroyed.
		d.cachingMu.Unlock()
		return
	}
	if refs > 0 {
		// fs.cachedDentries is permitted to contain dentries with non-zero refs,
		// which are skipped by fs.evictCachedDentryLocked() upon reaching the end
		// of the LRU. But it is still beneficial to remove d from the cache as we
		// are already holding d.cachingMu. Keeping a cleaner cache also reduces
		// the number of evictions (which is expensive as it acquires fs.renameMu).
		d.removeFromCacheLocked()
		d.cachingMu.Unlock()
		return
	}
	// Deleted and invalidated dentries with zero references are no longer
	// reachable by path resolution and should be dropped immediately.
	if d.vfsd.IsDead() {
		d.removeFromCacheLocked()
		d.cachingMu.Unlock()
		if !renameMuWriteLocked {
			// Need to lock d.fs.renameMu for writing as needed by d.destroyLocked().
			d.fs.renameMu.Lock()
			defer d.fs.renameMu.Unlock()
			// Now that renameMu is locked for writing, no more refs can be taken on
			// d because path resolution requires renameMu for reading at least.
			if atomic.LoadInt64(&d.refs) != 0 {
				// Destroy d only if its ref is still 0. If not, either someone took a
				// ref on it or it got destroyed before fs.renameMu could be acquired.
				return
			}
		}
		if d.isDeleted() {
			d.watches.HandleDeletion(ctx)
		}
		d.destroyLocked(ctx) // +checklocksforce: renameMu must be acquired at this point.
		return
	}
	// If d still has inotify watches and it is not deleted or invalidated, it
	// can't be evicted. Otherwise, we will lose its watches, even if a new
	// dentry is created for the same file in the future. Note that the size of
	// d.watches cannot concurrently transition from zero to non-zero, because
	// adding a watch requires holding a reference on d.
	if d.watches.Size() > 0 {
		// As in the refs > 0 case, removing d is beneficial.
		d.removeFromCacheLocked()
		d.cachingMu.Unlock()
		return
	}

	if atomic.LoadInt32(&d.fs.released) != 0 {
		d.cachingMu.Unlock()
		if !renameMuWriteLocked {
			// Need to lock d.fs.renameMu to access d.parent. Lock it for writing as
			// needed by d.destroyLocked() later.
			d.fs.renameMu.Lock()
			defer d.fs.renameMu.Unlock()
		}
		if d.parent != nil {
			d.parent.dirMu.Lock()
			delete(d.parent.children, d.name)
			d.parent.dirMu.Unlock()
		}
		d.destroyLocked(ctx) // +checklocksforce: see above.
		return
	}

	d.fs.cacheMu.Lock()
	// If d is already cached, just move it to the front of the LRU.
	if d.cached {
		d.fs.cachedDentries.Remove(d)
		d.fs.cachedDentries.PushFront(d)
		d.fs.cacheMu.Unlock()
		d.cachingMu.Unlock()
		return
	}
	// Cache the dentry, then evict the least recently used cached dentry if
	// the cache becomes over-full.
	d.fs.cachedDentries.PushFront(d)
	d.fs.cachedDentriesLen++
	d.cached = true
	shouldEvict := d.fs.cachedDentriesLen > d.fs.opts.maxCachedDentries
	d.fs.cacheMu.Unlock()
	d.cachingMu.Unlock()

	if shouldEvict {
		if !renameMuWriteLocked {
			// Need to lock d.fs.renameMu for writing as needed by
			// d.evictCachedDentryLocked().
			d.fs.renameMu.Lock()
			defer d.fs.renameMu.Unlock()
		}
		d.fs.evictCachedDentryLocked(ctx) // +checklocksforce: see above.
	}
}

// Preconditions: d.cachingMu must be locked.
func (d *dentry) removeFromCacheLocked() {
	if d.cached {
		d.fs.cacheMu.Lock()
		d.fs.cachedDentries.Remove(d)
		d.fs.cachedDentriesLen--
		d.fs.cacheMu.Unlock()
		d.cached = false
	}
}

// Precondition: fs.renameMu must be locked for writing; it may be temporarily
// unlocked.
// +checklocks:fs.renameMu
func (fs *filesystem) evictAllCachedDentriesLocked(ctx context.Context) {
	for fs.cachedDentriesLen != 0 {
		fs.evictCachedDentryLocked(ctx)
	}
}

// Preconditions:
// * fs.renameMu must be locked for writing; it may be temporarily unlocked.
// +checklocks:fs.renameMu
func (fs *filesystem) evictCachedDentryLocked(ctx context.Context) {
	fs.cacheMu.Lock()
	victim := fs.cachedDentries.Back()
	fs.cacheMu.Unlock()
	if victim == nil {
		// fs.cachedDentries may have become empty between when it was checked and
		// when we locked fs.cacheMu.
		return
	}

	victim.cachingMu.Lock()
	victim.removeFromCacheLocked()
	// victim.refs or victim.watches.Size() may have become non-zero from an
	// earlier path resolution since it was inserted into fs.cachedDentries.
	if atomic.LoadInt64(&victim.refs) != 0 || victim.watches.Size() != 0 {
		victim.cachingMu.Unlock()
		return
	}
	if victim.parent != nil {
		victim.parent.dirMu.Lock()
		if !victim.vfsd.IsDead() {
			// Note that victim can't be a mount point (in any mount
			// namespace), since VFS holds references on mount points.
			fs.vfsfs.VirtualFilesystem().InvalidateDentry(ctx, &victim.vfsd)
			delete(victim.parent.children, victim.name)
			// We're only deleting the dentry, not the file it
			// represents, so we don't need to update
			// victimParent.dirents etc.
		}
		victim.parent.dirMu.Unlock()
	}
	// Safe to unlock cachingMu now that victim.vfsd.IsDead(). Henceforth any
	// concurrent caching attempts on victim will attempt to destroy it and so
	// will try to acquire fs.renameMu (which we have already acquired). Hence,
	// fs.renameMu will synchronize the destroy attempts.
	victim.cachingMu.Unlock()
	victim.destroyLocked(ctx) // +checklocksforce: owned as precondition, victim.fs == fs.
}

// destroyLocked destroys the dentry.
//
// Preconditions:
// * d.fs.renameMu must be locked for writing; it may be temporarily unlocked.
// * d.refs == 0.
// * d.parent.children[d.name] != d, i.e. d is not reachable by path traversal
//   from its former parent dentry.
// +checklocks:d.fs.renameMu
func (d *dentry) destroyLocked(ctx context.Context) {
	switch atomic.LoadInt64(&d.refs) {
	case 0:
		// Mark the dentry destroyed.
		atomic.StoreInt64(&d.refs, -1)
	case -1:
		panic("dentry.destroyLocked() called on already destroyed dentry")
	default:
		panic("dentry.destroyLocked() called with references on the dentry")
	}

	// Allow the following to proceed without renameMu locked to improve
	// scalability.
	d.fs.renameMu.Unlock()

	mf := d.fs.mfp.MemoryFile()
	d.handleMu.Lock()
	d.dataMu.Lock()
	if h := d.writeHandleLocked(); h.isOpen() {
		// Write dirty pages back to the remote filesystem.
		if err := fsutil.SyncDirtyAll(ctx, &d.cache, &d.dirty, d.size, mf, h.writeFromBlocksAt); err != nil {
			log.Warningf("gofer.dentry.destroyLocked: failed to write dirty data back: %v", err)
		}
	}
	// Discard cached data.
	if !d.cache.IsEmpty() {
		mf.MarkAllUnevictable(d)
		d.cache.DropAll(mf)
		d.dirty.RemoveAll()
	}
	d.dataMu.Unlock()
	if d.fs.opts.lisaEnabled {
		if d.readFDLisa.Ok() && d.readFDLisa.ID() != d.writeFDLisa.ID() {
			d.readFDLisa.CloseBatched(ctx)
		}
		if d.writeFDLisa.Ok() {
			d.writeFDLisa.CloseBatched(ctx)
		}
	} else {
		// Clunk open fids and close open host FDs.
		if !d.readFile.isNil() {
			_ = d.readFile.close(ctx)
		}
		if !d.writeFile.isNil() && d.readFile != d.writeFile {
			_ = d.writeFile.close(ctx)
		}
		d.readFile = p9file{}
		d.writeFile = p9file{}
	}
	if d.readFD >= 0 {
		_ = unix.Close(int(d.readFD))
	}
	if d.writeFD >= 0 && d.readFD != d.writeFD {
		_ = unix.Close(int(d.writeFD))
	}
	d.readFD = -1
	d.writeFD = -1
	d.mmapFD = -1
	d.handleMu.Unlock()

	if d.isControlFileOk() {
		// Note that it's possible that d.atimeDirty or d.mtimeDirty are true,
		// i.e. client and server timestamps may differ (because e.g. a client
		// write was serviced by the page cache, and only written back to the
		// remote file later). Ideally, we'd write client timestamps back to
		// the remote filesystem so that timestamps for a new dentry
		// instantiated for the same file would remain coherent. Unfortunately,
		// this turns out to be too expensive in many cases, so for now we
		// don't do this.

		// Close the control FD.
		if d.fs.opts.lisaEnabled {
			d.controlFDLisa.CloseBatched(ctx)
		} else {
			if err := d.file.close(ctx); err != nil {
				log.Warningf("gofer.dentry.destroyLocked: failed to close file: %v", err)
			}
			d.file = p9file{}
		}

		// Remove d from the set of syncable dentries.
		d.fs.syncMu.Lock()
		delete(d.fs.syncableDentries, d)
		d.fs.syncMu.Unlock()
	}

	d.fs.renameMu.Lock()

	// Drop the reference held by d on its parent without recursively locking
	// d.fs.renameMu.
	if d.parent != nil && d.parent.decRefNoCaching() == 0 {
		d.parent.checkCachingLocked(ctx, true /* renameMuWriteLocked */)
	}
	refsvfs2.Unregister(d)
}

func (d *dentry) isDeleted() bool {
	return atomic.LoadUint32(&d.deleted) != 0
}

func (d *dentry) setDeleted() {
	atomic.StoreUint32(&d.deleted, 1)
}

func (d *dentry) isControlFileOk() bool {
	if d.fs.opts.lisaEnabled {
		return d.controlFDLisa.Ok()
	}
	return !d.file.isNil()
}

func (d *dentry) isReadFileOk() bool {
	if d.fs.opts.lisaEnabled {
		return d.readFDLisa.Ok()
	}
	return !d.readFile.isNil()
}

func (d *dentry) listXattr(ctx context.Context, size uint64) ([]string, error) {
	if !d.isControlFileOk() {
		return nil, nil
	}

	if d.fs.opts.lisaEnabled {
		xattrs, err := d.controlFDLisa.ListXattr(ctx, size)
		if err != nil {
			return nil, err
		}

		res := make([]string, 0, len(xattrs))
		for _, xattr := range xattrs {
			res = append(res, xattr)
		}
		return res, nil
	}

	xattrMap, err := d.file.listXattr(ctx, size)
	if err != nil {
		return nil, err
	}
	xattrs := make([]string, 0, len(xattrMap))
	for x := range xattrMap {
		xattrs = append(xattrs, x)
	}
	return xattrs, nil
}

func (d *dentry) getXattr(ctx context.Context, creds *auth.Credentials, opts *vfs.GetXattrOptions) (string, error) {
	if !d.isControlFileOk() {
		return "", linuxerr.ENODATA
	}
	if err := d.checkXattrPermissions(creds, opts.Name, vfs.MayRead); err != nil {
		return "", err
	}
	if d.fs.opts.lisaEnabled {
		return d.controlFDLisa.GetXattr(ctx, opts.Name, opts.Size)
	}
	return d.file.getXattr(ctx, opts.Name, opts.Size)
}

func (d *dentry) setXattr(ctx context.Context, creds *auth.Credentials, opts *vfs.SetXattrOptions) error {
	if !d.isControlFileOk() {
		return linuxerr.EPERM
	}
	if err := d.checkXattrPermissions(creds, opts.Name, vfs.MayWrite); err != nil {
		return err
	}
	if d.fs.opts.lisaEnabled {
		return d.controlFDLisa.SetXattr(ctx, opts.Name, opts.Value, opts.Flags)
	}
	return d.file.setXattr(ctx, opts.Name, opts.Value, opts.Flags)
}

func (d *dentry) removeXattr(ctx context.Context, creds *auth.Credentials, name string) error {
	if !d.isControlFileOk() {
		return linuxerr.EPERM
	}
	if err := d.checkXattrPermissions(creds, name, vfs.MayWrite); err != nil {
		return err
	}
	if d.fs.opts.lisaEnabled {
		return d.controlFDLisa.RemoveXattr(ctx, name)
	}
	return d.file.removeXattr(ctx, name)
}

// Preconditions:
// * !d.isSynthetic().
// * d.isRegularFile() || d.isDir().
func (d *dentry) ensureSharedHandle(ctx context.Context, read, write, trunc bool) error {
	// O_TRUNC unconditionally requires us to obtain a new handle (opened with
	// O_TRUNC).
	if !trunc {
		d.handleMu.RLock()
		var canReuseCurHandle bool
		if d.fs.opts.lisaEnabled {
			canReuseCurHandle = (!read || d.readFDLisa.Ok()) && (!write || d.writeFDLisa.Ok())
		} else {
			canReuseCurHandle = (!read || !d.readFile.isNil()) && (!write || !d.writeFile.isNil())
		}
		d.handleMu.RUnlock()
		if canReuseCurHandle {
			// Current handles are sufficient.
			return nil
		}
	}

	var fdsToCloseArr [2]int32
	fdsToClose := fdsToCloseArr[:0]
	invalidateTranslations := false
	d.handleMu.Lock()
	var needNewHandle bool
	if d.fs.opts.lisaEnabled {
		needNewHandle = (read && !d.readFDLisa.Ok()) || (write && !d.writeFDLisa.Ok()) || trunc
	} else {
		needNewHandle = (read && d.readFile.isNil()) || (write && d.writeFile.isNil()) || trunc
	}
	if needNewHandle {
		// Get a new handle. If this file has been opened for both reading and
		// writing, try to get a single handle that is usable for both:
		//
		// - Writable memory mappings of a host FD require that the host FD is
		// opened for both reading and writing.
		//
		// - NOTE(b/141991141): Some filesystems may not ensure coherence
		// between multiple handles for the same file.
		var (
			openReadable bool
			openWritable bool
			h            handle
			err          error
		)
		if d.fs.opts.lisaEnabled {
			openReadable = d.readFDLisa.Ok() || read
			openWritable = d.writeFDLisa.Ok() || write
			h, err = openHandleLisa(ctx, d.controlFDLisa, openReadable, openWritable, trunc)
		} else {
			openReadable = !d.readFile.isNil() || read
			openWritable = !d.writeFile.isNil() || write
			h, err = openHandle(ctx, d.file, openReadable, openWritable, trunc)
		}
		if linuxerr.Equals(linuxerr.EACCES, err) && (openReadable != read || openWritable != write) {
			// It may not be possible to use a single handle for both
			// reading and writing, since permissions on the file may have
			// changed to e.g. disallow reading after previously being
			// opened for reading. In this case, we have no choice but to
			// use separate handles for reading and writing.
			ctx.Debugf("gofer.dentry.ensureSharedHandle: bifurcating read/write handles for dentry %p", d)
			openReadable = read
			openWritable = write
			if d.fs.opts.lisaEnabled {
				h, err = openHandleLisa(ctx, d.controlFDLisa, openReadable, openWritable, trunc)
			} else {
				h, err = openHandle(ctx, d.file, openReadable, openWritable, trunc)
			}
		}
		if err != nil {
			d.handleMu.Unlock()
			return err
		}

		// Update d.readFD and d.writeFD.
		if h.fd >= 0 {
			if openReadable && openWritable && (d.readFD < 0 || d.writeFD < 0 || d.readFD != d.writeFD) {
				// Replace existing FDs with this one.
				if d.readFD >= 0 {
					// We already have a readable FD that may be in use by
					// concurrent callers of d.pf.FD().
					if d.fs.opts.overlayfsStaleRead {
						// If overlayfsStaleRead is in effect, then the new FD
						// may not be coherent with the existing one, so we
						// have no choice but to switch to mappings of the new
						// FD in both the application and sentry.
						if err := d.pf.hostFileMapper.RegenerateMappings(int(h.fd)); err != nil {
							d.handleMu.Unlock()
							ctx.Warningf("gofer.dentry.ensureSharedHandle: failed to replace sentry mappings of old FD with mappings of new FD: %v", err)
							h.close(ctx)
							return err
						}
						fdsToClose = append(fdsToClose, d.readFD)
						invalidateTranslations = true
						atomic.StoreInt32(&d.readFD, h.fd)
					} else {
						// Otherwise, we want to avoid invalidating existing
						// memmap.Translations (which is expensive); instead, use
						// dup3 to make the old file descriptor refer to the new
						// file description, then close the new file descriptor
						// (which is no longer needed). Racing callers of d.pf.FD()
						// may use the old or new file description, but this
						// doesn't matter since they refer to the same file, and
						// any racing mappings must be read-only.
						if err := unix.Dup3(int(h.fd), int(d.readFD), unix.O_CLOEXEC); err != nil {
							oldFD := d.readFD
							d.handleMu.Unlock()
							ctx.Warningf("gofer.dentry.ensureSharedHandle: failed to dup fd %d to fd %d: %v", h.fd, oldFD, err)
							h.close(ctx)
							return err
						}
						fdsToClose = append(fdsToClose, h.fd)
						h.fd = d.readFD
					}
				} else {
					atomic.StoreInt32(&d.readFD, h.fd)
				}
				if d.writeFD != h.fd && d.writeFD >= 0 {
					fdsToClose = append(fdsToClose, d.writeFD)
				}
				atomic.StoreInt32(&d.writeFD, h.fd)
				atomic.StoreInt32(&d.mmapFD, h.fd)
			} else if openReadable && d.readFD < 0 {
				atomic.StoreInt32(&d.readFD, h.fd)
				// If the file has not been opened for writing, the new FD may
				// be used for read-only memory mappings. If the file was
				// previously opened for reading (without an FD), then existing
				// translations of the file may use the internal page cache;
				// invalidate those mappings.
				if d.fs.opts.lisaEnabled {
					if !d.writeFDLisa.Ok() {
						invalidateTranslations = d.readFDLisa.Ok()
						atomic.StoreInt32(&d.mmapFD, h.fd)
					}
				} else {
					if d.writeFile.isNil() {
						invalidateTranslations = !d.readFile.isNil()
						atomic.StoreInt32(&d.mmapFD, h.fd)
					}
				}
			} else if openWritable && d.writeFD < 0 {
				atomic.StoreInt32(&d.writeFD, h.fd)
				if d.readFD >= 0 {
					// We have an existing read-only FD, but the file has just
					// been opened for writing, so we need to start supporting
					// writable memory mappings. However, the new FD is not
					// readable, so we have no FD that can be used to create
					// writable memory mappings. Switch to using the internal
					// page cache.
					invalidateTranslations = true
					atomic.StoreInt32(&d.mmapFD, -1)
				}
			} else {
				// The new FD is not useful.
				fdsToClose = append(fdsToClose, h.fd)
			}
		} else if openWritable && d.writeFD < 0 && d.mmapFD >= 0 {
			// We have an existing read-only FD, but the file has just been
			// opened for writing, so we need to start supporting writable
			// memory mappings. However, we have no writable host FD. Switch to
			// using the internal page cache.
			invalidateTranslations = true
			atomic.StoreInt32(&d.mmapFD, -1)
		}

		// Switch to new fids/FDs.
		if d.fs.opts.lisaEnabled {
			oldReadFD := lisafs.InvalidFDID
			if openReadable {
				oldReadFD = d.readFDLisa.ID()
				d.readFDLisa = h.fdLisa
			}
			oldWriteFD := lisafs.InvalidFDID
			if openWritable {
				oldWriteFD = d.writeFDLisa.ID()
				d.writeFDLisa = h.fdLisa
			}
			// NOTE(b/141991141): Close old FDs before making new fids visible (by
			// unlocking d.handleMu).
			if oldReadFD.Ok() {
				d.fs.clientLisa.CloseFDBatched(ctx, oldReadFD)
			}
			if oldWriteFD.Ok() && oldReadFD != oldWriteFD {
				d.fs.clientLisa.CloseFDBatched(ctx, oldWriteFD)
			}
		} else {
			var oldReadFile p9file
			if openReadable {
				oldReadFile = d.readFile
				d.readFile = h.file
			}
			var oldWriteFile p9file
			if openWritable {
				oldWriteFile = d.writeFile
				d.writeFile = h.file
			}
			// NOTE(b/141991141): Clunk old fids before making new fids visible (by
			// unlocking d.handleMu).
			if !oldReadFile.isNil() {
				oldReadFile.close(ctx)
			}
			if !oldWriteFile.isNil() && oldReadFile != oldWriteFile {
				oldWriteFile.close(ctx)
			}
		}
	}
	d.handleMu.Unlock()

	if invalidateTranslations {
		// Invalidate application mappings that may be using an old FD; they
		// will be replaced with mappings using the new FD after future calls
		// to d.Translate(). This requires holding d.mapsMu, which precedes
		// d.handleMu in the lock order.
		d.mapsMu.Lock()
		d.mappings.InvalidateAll(memmap.InvalidateOpts{})
		d.mapsMu.Unlock()
	}
	for _, fd := range fdsToClose {
		unix.Close(int(fd))
	}

	return nil
}

// Preconditions: d.handleMu must be locked.
func (d *dentry) readHandleLocked() handle {
	return handle{
		fdLisa: d.readFDLisa,
		file:   d.readFile,
		fd:     d.readFD,
	}
}

// Preconditions: d.handleMu must be locked.
func (d *dentry) writeHandleLocked() handle {
	return handle{
		fdLisa: d.writeFDLisa,
		file:   d.writeFile,
		fd:     d.writeFD,
	}
}

func (d *dentry) syncRemoteFile(ctx context.Context) error {
	d.handleMu.RLock()
	defer d.handleMu.RUnlock()
	return d.syncRemoteFileLocked(ctx, nil /* accFsyncFDIDsLisa */)
}

// Preconditions: d.handleMu must be locked.
func (d *dentry) syncRemoteFileLocked(ctx context.Context, accFsyncFDIDsLisa *[]lisafs.FDID) error {
	// If we have a host FD, fsyncing it is likely to be faster than an fsync
	// RPC. Prefer syncing write handles over read handles, since some remote
	// filesystem implementations may not sync changes made through write
	// handles otherwise.
	if d.writeFD >= 0 {
		ctx.UninterruptibleSleepStart(false)
		err := unix.Fsync(int(d.writeFD))
		ctx.UninterruptibleSleepFinish(false)
		return err
	}
	if d.fs.opts.lisaEnabled && d.writeFDLisa.Ok() {
		if accFsyncFDIDsLisa != nil {
			*accFsyncFDIDsLisa = append(*accFsyncFDIDsLisa, d.writeFDLisa.ID())
			return nil
		}
		return d.writeFDLisa.Sync(ctx)
	} else if !d.fs.opts.lisaEnabled && !d.writeFile.isNil() {
		return d.writeFile.fsync(ctx)
	}
	if d.readFD >= 0 {
		ctx.UninterruptibleSleepStart(false)
		err := unix.Fsync(int(d.readFD))
		ctx.UninterruptibleSleepFinish(false)
		return err
	}
	if d.fs.opts.lisaEnabled && d.readFDLisa.Ok() {
		if accFsyncFDIDsLisa != nil {
			*accFsyncFDIDsLisa = append(*accFsyncFDIDsLisa, d.readFDLisa.ID())
			return nil
		}
		return d.readFDLisa.Sync(ctx)
	} else if !d.fs.opts.lisaEnabled && !d.readFile.isNil() {
		return d.readFile.fsync(ctx)
	}
	return nil
}

func (d *dentry) syncCachedFile(ctx context.Context, forFilesystemSync bool, accFsyncFDIDsLisa *[]lisafs.FDID) error {
	d.handleMu.RLock()
	defer d.handleMu.RUnlock()
	h := d.writeHandleLocked()
	if h.isOpen() {
		// Write back dirty pages to the remote file.
		d.dataMu.Lock()
		err := fsutil.SyncDirtyAll(ctx, &d.cache, &d.dirty, d.size, d.fs.mfp.MemoryFile(), h.writeFromBlocksAt)
		d.dataMu.Unlock()
		if err != nil {
			return err
		}
	}
	if err := d.syncRemoteFileLocked(ctx, accFsyncFDIDsLisa); err != nil {
		if !forFilesystemSync {
			return err
		}
		// Only return err if we can reasonably have expected sync to succeed
		// (d is a regular file and was opened for writing).
		if d.isRegularFile() && h.isOpen() {
			return err
		}
		ctx.Debugf("gofer.dentry.syncCachedFile: syncing non-writable or non-regular-file dentry failed: %v", err)
	}
	return nil
}

// incLinks increments link count.
func (d *dentry) incLinks() {
	if atomic.LoadUint32(&d.nlink) == 0 {
		// The remote filesystem doesn't support link count.
		return
	}
	atomic.AddUint32(&d.nlink, 1)
}

// decLinks decrements link count.
func (d *dentry) decLinks() {
	if atomic.LoadUint32(&d.nlink) == 0 {
		// The remote filesystem doesn't support link count.
		return
	}
	atomic.AddUint32(&d.nlink, ^uint32(0))
}

// fileDescription is embedded by gofer implementations of
// vfs.FileDescriptionImpl.
//
// +stateify savable
type fileDescription struct {
	vfsfd vfs.FileDescription
	vfs.FileDescriptionDefaultImpl
	vfs.LockFD

	lockLogging sync.Once `state:"nosave"`
}

func (fd *fileDescription) filesystem() *filesystem {
	return fd.vfsfd.Mount().Filesystem().Impl().(*filesystem)
}

func (fd *fileDescription) dentry() *dentry {
	return fd.vfsfd.Dentry().Impl().(*dentry)
}

// Stat implements vfs.FileDescriptionImpl.Stat.
func (fd *fileDescription) Stat(ctx context.Context, opts vfs.StatOptions) (linux.Statx, error) {
	d := fd.dentry()
	const validMask = uint32(linux.STATX_MODE | linux.STATX_UID | linux.STATX_GID | linux.STATX_ATIME | linux.STATX_MTIME | linux.STATX_CTIME | linux.STATX_SIZE | linux.STATX_BLOCKS | linux.STATX_BTIME)
	if !d.cachedMetadataAuthoritative() && opts.Mask&validMask != 0 && opts.Sync != linux.AT_STATX_DONT_SYNC {
		if d.fs.opts.lisaEnabled {
			// Use specialFileFD.handle.fileLisa for the Stat if available, for the
			// same reason that we try to use open FD in updateFromStatLisaLocked().
			var fdLisa *lisafs.ClientFD
			if sffd, ok := fd.vfsfd.Impl().(*specialFileFD); ok {
				fdLisa = &sffd.handle.fdLisa
			}
			d.metadataMu.Lock()
			err := d.updateFromStatLisaLocked(ctx, fdLisa)
			d.metadataMu.Unlock()
			if err != nil {
				return linux.Statx{}, err
			}
		} else {
			// Use specialFileFD.handle.file for the getattr if available, for the
			// same reason that we try to use open file handles in
			// dentry.updateFromGetattrLocked().
			var file p9file
			if sffd, ok := fd.vfsfd.Impl().(*specialFileFD); ok {
				file = sffd.handle.file
			}
			d.metadataMu.Lock()
			err := d.updateFromGetattrLocked(ctx, file)
			d.metadataMu.Unlock()
			if err != nil {
				return linux.Statx{}, err
			}
		}
	}
	var stat linux.Statx
	d.statTo(&stat)
	return stat, nil
}

// SetStat implements vfs.FileDescriptionImpl.SetStat.
func (fd *fileDescription) SetStat(ctx context.Context, opts vfs.SetStatOptions) error {
	if err := fd.dentry().setStat(ctx, auth.CredentialsFromContext(ctx), &opts, fd.vfsfd.Mount()); err != nil {
		return err
	}
	if ev := vfs.InotifyEventFromStatMask(opts.Stat.Mask); ev != 0 {
		fd.dentry().InotifyWithParent(ctx, ev, 0, vfs.InodeEvent)
	}
	return nil
}

// ListXattr implements vfs.FileDescriptionImpl.ListXattr.
func (fd *fileDescription) ListXattr(ctx context.Context, size uint64) ([]string, error) {
	return fd.dentry().listXattr(ctx, size)
}

// GetXattr implements vfs.FileDescriptionImpl.GetXattr.
func (fd *fileDescription) GetXattr(ctx context.Context, opts vfs.GetXattrOptions) (string, error) {
	return fd.dentry().getXattr(ctx, auth.CredentialsFromContext(ctx), &opts)
}

// SetXattr implements vfs.FileDescriptionImpl.SetXattr.
func (fd *fileDescription) SetXattr(ctx context.Context, opts vfs.SetXattrOptions) error {
	d := fd.dentry()
	if err := d.setXattr(ctx, auth.CredentialsFromContext(ctx), &opts); err != nil {
		return err
	}
	d.InotifyWithParent(ctx, linux.IN_ATTRIB, 0, vfs.InodeEvent)
	return nil
}

// RemoveXattr implements vfs.FileDescriptionImpl.RemoveXattr.
func (fd *fileDescription) RemoveXattr(ctx context.Context, name string) error {
	d := fd.dentry()
	if err := d.removeXattr(ctx, auth.CredentialsFromContext(ctx), name); err != nil {
		return err
	}
	d.InotifyWithParent(ctx, linux.IN_ATTRIB, 0, vfs.InodeEvent)
	return nil
}

// LockBSD implements vfs.FileDescriptionImpl.LockBSD.
func (fd *fileDescription) LockBSD(ctx context.Context, uid fslock.UniqueID, ownerPID int32, t fslock.LockType, block fslock.Blocker) error {
	fd.lockLogging.Do(func() {
		log.Infof("File lock using gofer file handled internally.")
	})
	return fd.LockFD.LockBSD(ctx, uid, ownerPID, t, block)
}

// LockPOSIX implements vfs.FileDescriptionImpl.LockPOSIX.
func (fd *fileDescription) LockPOSIX(ctx context.Context, uid fslock.UniqueID, ownerPID int32, t fslock.LockType, r fslock.LockRange, block fslock.Blocker) error {
	fd.lockLogging.Do(func() {
		log.Infof("Range lock using gofer file handled internally.")
	})
	return fd.Locks().LockPOSIX(ctx, uid, ownerPID, t, r, block)
}

// UnlockPOSIX implements vfs.FileDescriptionImpl.UnlockPOSIX.
func (fd *fileDescription) UnlockPOSIX(ctx context.Context, uid fslock.UniqueID, r fslock.LockRange) error {
	return fd.Locks().UnlockPOSIX(ctx, uid, r)
}