1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
|
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ext
import (
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/binary"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/sentry/fs"
"gvisor.dev/gvisor/pkg/sentry/fsimpl/ext/disklayout"
"gvisor.dev/gvisor/pkg/sentry/vfs"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/syserror"
)
// directory represents a directory inode. It holds the childList in memory.
type directory struct {
inode inode
// childCache maps filenames to dentries for children for which dentries
// have been instantiated. childCache is protected by filesystem.mu.
childCache map[string]*dentry
// mu serializes the changes to childList.
// Lock Order (outermost locks must be taken first):
// directory.mu
// filesystem.mu
mu sync.Mutex
// childList is a list containing (1) child dirents and (2) fake dirents
// (with diskDirent == nil) that represent the iteration position of
// directoryFDs. childList is used to support directoryFD.IterDirents()
// efficiently. childList is protected by mu.
childList direntList
// childMap maps the child's filename to the dirent structure stored in
// childList. This adds some data replication but helps in faster path
// traversal. For consistency, key == childMap[key].diskDirent.FileName().
// Immutable.
childMap map[string]*dirent
}
// newDirectory is the directory constructor.
func newDirectory(args inodeArgs, newDirent bool) (*directory, error) {
file := &directory{
childCache: make(map[string]*dentry),
childMap: make(map[string]*dirent),
}
file.inode.init(args, file)
// Initialize childList by reading dirents from the underlying file.
if args.diskInode.Flags().Index {
// TODO(b/134676337): Support hash tree directories. Currently only the '.'
// and '..' entries are read in.
// Users cannot navigate this hash tree directory yet.
log.Warningf("hash tree directory being used which is unsupported")
return file, nil
}
// The dirents are organized in a linear array in the file data.
// Extract the file data and decode the dirents.
regFile, err := newRegularFile(args)
if err != nil {
return nil, err
}
// buf is used as scratch space for reading in dirents from disk and
// unmarshalling them into dirent structs.
buf := make([]byte, disklayout.DirentSize)
size := args.diskInode.Size()
for off, inc := uint64(0), uint64(0); off < size; off += inc {
toRead := size - off
if toRead > disklayout.DirentSize {
toRead = disklayout.DirentSize
}
if n, err := regFile.impl.ReadAt(buf[:toRead], int64(off)); uint64(n) < toRead {
return nil, err
}
var curDirent dirent
if newDirent {
curDirent.diskDirent = &disklayout.DirentNew{}
} else {
curDirent.diskDirent = &disklayout.DirentOld{}
}
binary.Unmarshal(buf, binary.LittleEndian, curDirent.diskDirent)
if curDirent.diskDirent.Inode() != 0 && len(curDirent.diskDirent.FileName()) != 0 {
// Inode number and name length fields being set to 0 is used to indicate
// an unused dirent.
file.childList.PushBack(&curDirent)
file.childMap[curDirent.diskDirent.FileName()] = &curDirent
}
// The next dirent is placed exactly after this dirent record on disk.
inc = uint64(curDirent.diskDirent.RecordSize())
}
return file, nil
}
func (i *inode) isDir() bool {
_, ok := i.impl.(*directory)
return ok
}
// dirent is the directory.childList node.
type dirent struct {
diskDirent disklayout.Dirent
// direntEntry links dirents into their parent directory.childList.
direntEntry
}
// directoryFD represents a directory file description. It implements
// vfs.FileDescriptionImpl.
type directoryFD struct {
fileDescription
vfs.DirectoryFileDescriptionDefaultImpl
// Protected by directory.mu.
iter *dirent
off int64
}
// Compiles only if directoryFD implements vfs.FileDescriptionImpl.
var _ vfs.FileDescriptionImpl = (*directoryFD)(nil)
// Release implements vfs.FileDescriptionImpl.Release.
func (fd *directoryFD) Release() {
if fd.iter == nil {
return
}
dir := fd.inode().impl.(*directory)
dir.mu.Lock()
dir.childList.Remove(fd.iter)
dir.mu.Unlock()
fd.iter = nil
}
// IterDirents implements vfs.FileDescriptionImpl.IterDirents.
func (fd *directoryFD) IterDirents(ctx context.Context, cb vfs.IterDirentsCallback) error {
extfs := fd.filesystem()
dir := fd.inode().impl.(*directory)
dir.mu.Lock()
defer dir.mu.Unlock()
// Ensure that fd.iter exists and is not linked into dir.childList.
var child *dirent
if fd.iter == nil {
// Start iteration at the beginning of dir.
child = dir.childList.Front()
fd.iter = &dirent{}
} else {
// Continue iteration from where we left off.
child = fd.iter.Next()
dir.childList.Remove(fd.iter)
}
for ; child != nil; child = child.Next() {
// Skip other directoryFD iterators.
if child.diskDirent != nil {
childType, ok := child.diskDirent.FileType()
if !ok {
// We will need to read the inode off disk. Do not increment
// ref count here because this inode is not being added to the
// dentry tree.
extfs.mu.Lock()
childInode, err := extfs.getOrCreateInodeLocked(child.diskDirent.Inode())
extfs.mu.Unlock()
if err != nil {
// Usage of the file description after the error is
// undefined. This implementation would continue reading
// from the next dirent.
fd.off++
dir.childList.InsertAfter(child, fd.iter)
return err
}
childType = fs.ToInodeType(childInode.diskInode.Mode().FileType())
}
if err := cb.Handle(vfs.Dirent{
Name: child.diskDirent.FileName(),
Type: fs.ToDirentType(childType),
Ino: uint64(child.diskDirent.Inode()),
NextOff: fd.off + 1,
}); err != nil {
dir.childList.InsertBefore(child, fd.iter)
return err
}
fd.off++
}
}
dir.childList.PushBack(fd.iter)
return nil
}
// Seek implements vfs.FileDescriptionImpl.Seek.
func (fd *directoryFD) Seek(ctx context.Context, offset int64, whence int32) (int64, error) {
if whence != linux.SEEK_SET && whence != linux.SEEK_CUR {
return 0, syserror.EINVAL
}
dir := fd.inode().impl.(*directory)
dir.mu.Lock()
defer dir.mu.Unlock()
// Find resulting offset.
if whence == linux.SEEK_CUR {
offset += fd.off
}
if offset < 0 {
// lseek(2) specifies that EINVAL should be returned if the resulting offset
// is negative.
return 0, syserror.EINVAL
}
n := int64(len(dir.childMap))
realWantOff := offset
if realWantOff > n {
realWantOff = n
}
realCurOff := fd.off
if realCurOff > n {
realCurOff = n
}
// Ensure that fd.iter exists and is linked into dir.childList so we can
// intelligently seek from the optimal position.
if fd.iter == nil {
fd.iter = &dirent{}
dir.childList.PushFront(fd.iter)
}
// Guess that iterating from the current position is optimal.
child := fd.iter
diff := realWantOff - realCurOff // Shows direction and magnitude of travel.
// See if starting from the beginning or end is better.
abDiff := diff
if diff < 0 {
abDiff = -diff
}
if abDiff > realWantOff {
// Starting from the beginning is best.
child = dir.childList.Front()
diff = realWantOff
} else if abDiff > (n - realWantOff) {
// Starting from the end is best.
child = dir.childList.Back()
// (n - 1) because the last non-nil dirent represents the (n-1)th offset.
diff = realWantOff - (n - 1)
}
for child != nil {
// Skip other directoryFD iterators.
if child.diskDirent != nil {
if diff == 0 {
if child != fd.iter {
dir.childList.Remove(fd.iter)
dir.childList.InsertBefore(child, fd.iter)
}
fd.off = offset
return offset, nil
}
if diff < 0 {
diff++
child = child.Prev()
} else {
diff--
child = child.Next()
}
continue
}
if diff < 0 {
child = child.Prev()
} else {
child = child.Next()
}
}
// Reaching here indicates that the offset is beyond the end of the childList.
dir.childList.Remove(fd.iter)
dir.childList.PushBack(fd.iter)
fd.off = offset
return offset, nil
}
|