1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package devpts
import (
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/marshal/primitive"
"gvisor.dev/gvisor/pkg/safemem"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/kernel"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/syserror"
"gvisor.dev/gvisor/pkg/usermem"
"gvisor.dev/gvisor/pkg/waiter"
)
// waitBufMaxBytes is the maximum size of a wait buffer. It is based on
// TTYB_DEFAULT_MEM_LIMIT.
const waitBufMaxBytes = 131072
// queue represents one of the input or output queues between a pty master and
// replica. Bytes written to a queue are added to the read buffer until it is
// full, at which point they are written to the wait buffer. Bytes are
// processed (i.e. undergo termios transformations) as they are added to the
// read buffer. The read buffer is readable when its length is nonzero and
// readable is true.
//
// +stateify savable
type queue struct {
// mu protects everything in queue.
mu sync.Mutex `state:"nosave"`
// readBuf is buffer of data ready to be read when readable is true.
// This data has been processed.
readBuf []byte
// waitBuf contains data that can't fit into readBuf. It is put here
// until it can be loaded into the read buffer. waitBuf contains data
// that hasn't been processed.
waitBuf [][]byte
waitBufLen uint64
// readable indicates whether the read buffer can be read from. In
// canonical mode, there can be an unterminated line in the read buffer,
// so readable must be checked.
readable bool
// transform is the the queue's function for transforming bytes
// entering the queue. For example, transform might convert all '\r's
// entering the queue to '\n's.
transformer
}
// readReadiness returns whether q is ready to be read from.
func (q *queue) readReadiness(t *linux.KernelTermios) waiter.EventMask {
q.mu.Lock()
defer q.mu.Unlock()
if len(q.readBuf) > 0 && q.readable {
return waiter.ReadableEvents
}
return waiter.EventMask(0)
}
// writeReadiness returns whether q is ready to be written to.
func (q *queue) writeReadiness(t *linux.KernelTermios) waiter.EventMask {
q.mu.Lock()
defer q.mu.Unlock()
if q.waitBufLen < waitBufMaxBytes {
return waiter.WritableEvents
}
return waiter.EventMask(0)
}
// readableSize writes the number of readable bytes to userspace.
func (q *queue) readableSize(t *kernel.Task, io usermem.IO, args arch.SyscallArguments) error {
q.mu.Lock()
defer q.mu.Unlock()
size := primitive.Int32(0)
if q.readable {
size = primitive.Int32(len(q.readBuf))
}
_, err := size.CopyOut(t, args[2].Pointer())
return err
}
// read reads from q to userspace. It returns:
// - The number of bytes read
// - Whether the read caused more readable data to become available (whether
// data was pushed from the wait buffer to the read buffer).
// - Whether any data was echoed back (need to notify readers).
//
// Preconditions: l.termiosMu must be held for reading.
func (q *queue) read(ctx context.Context, dst usermem.IOSequence, l *lineDiscipline) (int64, bool, bool, error) {
q.mu.Lock()
defer q.mu.Unlock()
if !q.readable {
return 0, false, false, syserror.ErrWouldBlock
}
if dst.NumBytes() > canonMaxBytes {
dst = dst.TakeFirst(canonMaxBytes)
}
n, err := dst.CopyOutFrom(ctx, safemem.ReaderFunc(func(dst safemem.BlockSeq) (uint64, error) {
src := safemem.BlockSeqOf(safemem.BlockFromSafeSlice(q.readBuf))
n, err := safemem.CopySeq(dst, src)
if err != nil {
return 0, err
}
q.readBuf = q.readBuf[n:]
// If we read everything, this queue is no longer readable.
if len(q.readBuf) == 0 {
q.readable = false
}
return n, nil
}))
if err != nil {
return 0, false, false, err
}
// Move data from the queue's wait buffer to its read buffer.
nPushed, notifyEcho := q.pushWaitBufLocked(l)
return int64(n), nPushed > 0, notifyEcho, nil
}
// write writes to q from userspace.
// The returned boolean indicates whether any data was echoed back.
//
// Preconditions: l.termiosMu must be held for reading.
func (q *queue) write(ctx context.Context, src usermem.IOSequence, l *lineDiscipline) (int64, bool, error) {
q.mu.Lock()
defer q.mu.Unlock()
// Copy data into the wait buffer.
n, err := src.CopyInTo(ctx, safemem.WriterFunc(func(src safemem.BlockSeq) (uint64, error) {
copyLen := src.NumBytes()
room := waitBufMaxBytes - q.waitBufLen
// If out of room, return EAGAIN.
if room == 0 && copyLen > 0 {
return 0, syserror.ErrWouldBlock
}
// Cap the size of the wait buffer.
if copyLen > room {
copyLen = room
src = src.TakeFirst64(room)
}
buf := make([]byte, copyLen)
// Copy the data into the wait buffer.
dst := safemem.BlockSeqOf(safemem.BlockFromSafeSlice(buf))
n, err := safemem.CopySeq(dst, src)
if err != nil {
return 0, err
}
q.waitBufAppend(buf)
return n, nil
}))
if err != nil {
return 0, false, err
}
// Push data from the wait to the read buffer.
_, notifyEcho := q.pushWaitBufLocked(l)
return n, notifyEcho, nil
}
// writeBytes writes to q from b.
// The returned boolean indicates whether any data was echoed back.
//
// Preconditions: l.termiosMu must be held for reading.
func (q *queue) writeBytes(b []byte, l *lineDiscipline) bool {
q.mu.Lock()
defer q.mu.Unlock()
// Write to the wait buffer.
q.waitBufAppend(b)
_, notifyEcho := q.pushWaitBufLocked(l)
return notifyEcho
}
// pushWaitBufLocked fills the queue's read buffer with data from the wait
// buffer.
// The returned boolean indicates whether any data was echoed back.
//
// Preconditions:
// * l.termiosMu must be held for reading.
// * q.mu must be locked.
func (q *queue) pushWaitBufLocked(l *lineDiscipline) (int, bool) {
if q.waitBufLen == 0 {
return 0, false
}
// Move data from the wait to the read buffer.
var total int
var i int
var notifyEcho bool
for i = 0; i < len(q.waitBuf); i++ {
n, echo := q.transform(l, q, q.waitBuf[i])
total += n
notifyEcho = notifyEcho || echo
if n != len(q.waitBuf[i]) {
// The read buffer filled up without consuming the
// entire buffer.
q.waitBuf[i] = q.waitBuf[i][n:]
break
}
}
// Update wait buffer based on consumed data.
q.waitBuf = q.waitBuf[i:]
q.waitBufLen -= uint64(total)
return total, notifyEcho
}
// Precondition: q.mu must be locked.
func (q *queue) waitBufAppend(b []byte) {
q.waitBuf = append(q.waitBuf, b)
q.waitBufLen += uint64(len(b))
}
|