1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
|
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package fs
import (
"io"
"sync/atomic"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/syserror"
)
// Splice moves data to this file, directly from another.
//
// Offsets are updated only if DstOffset and SrcOffset are set.
func Splice(ctx context.Context, dst *File, src *File, opts SpliceOpts) (int64, error) {
// Verify basic file flag permissions.
if !dst.Flags().Write || !src.Flags().Read {
return 0, syserror.EBADF
}
// Check whether or not the objects being sliced are stream-oriented
// (i.e. pipes or sockets). For all stream-oriented files and files
// where a specific offiset is not request, we acquire the file mutex.
// This has two important side effects. First, it provides the standard
// protection against concurrent writes that would mutate the offset.
// Second, it prevents Splice deadlocks. Only internal anonymous files
// implement the ReadFrom and WriteTo methods directly, and since such
// anonymous files are referred to by a unique fs.File object, we know
// that the file mutex takes strict precedence over internal locks.
// Since we enforce lock ordering here, we can't deadlock by using
// using a file in two different splice operations simultaneously.
srcPipe := !IsRegular(src.Dirent.Inode.StableAttr)
dstPipe := !IsRegular(dst.Dirent.Inode.StableAttr)
dstAppend := !dstPipe && dst.Flags().Append
srcLock := srcPipe || !opts.SrcOffset
dstLock := dstPipe || !opts.DstOffset || dstAppend
switch {
case srcLock && dstLock:
switch {
case dst.UniqueID < src.UniqueID:
// Acquire dst first.
if !dst.mu.Lock(ctx) {
return 0, syserror.ErrInterrupted
}
if !src.mu.Lock(ctx) {
dst.mu.Unlock()
return 0, syserror.ErrInterrupted
}
case dst.UniqueID > src.UniqueID:
// Acquire src first.
if !src.mu.Lock(ctx) {
return 0, syserror.ErrInterrupted
}
if !dst.mu.Lock(ctx) {
src.mu.Unlock()
return 0, syserror.ErrInterrupted
}
case dst.UniqueID == src.UniqueID:
// Acquire only one lock; it's the same file. This is a
// bit of a edge case, but presumably it's possible.
if !dst.mu.Lock(ctx) {
return 0, syserror.ErrInterrupted
}
srcLock = false // Only need one unlock.
}
// Use both offsets (locked).
opts.DstStart = dst.offset
opts.SrcStart = src.offset
case dstLock:
// Acquire only dst.
if !dst.mu.Lock(ctx) {
return 0, syserror.ErrInterrupted
}
opts.DstStart = dst.offset // Safe: locked.
case srcLock:
// Acquire only src.
if !src.mu.Lock(ctx) {
return 0, syserror.ErrInterrupted
}
opts.SrcStart = src.offset // Safe: locked.
}
var err error
if dstAppend {
unlock := dst.Dirent.Inode.lockAppendMu(dst.Flags().Append)
defer unlock()
// Figure out the appropriate offset to use.
err = dst.offsetForAppend(ctx, &opts.DstStart)
}
if err == nil && !dstPipe {
// Enforce file limits.
limit, ok := dst.checkLimit(ctx, opts.DstStart)
switch {
case ok && limit == 0:
err = syserror.ErrExceedsFileSizeLimit
case ok && limit < opts.Length:
opts.Length = limit // Cap the write.
}
}
if err != nil {
if dstLock {
dst.mu.Unlock()
}
if srcLock {
src.mu.Unlock()
}
return 0, err
}
// Construct readers and writers for the splice. This is used to
// provide a safer locking path for the WriteTo/ReadFrom operations
// (since they will otherwise go through public interface methods which
// conflict with locking done above), and simplifies the fallback path.
w := &lockedWriter{
Ctx: ctx,
File: dst,
Offset: opts.DstStart,
}
r := &lockedReader{
Ctx: ctx,
File: src,
Offset: opts.SrcStart,
}
// Attempt to do a WriteTo; this is likely the most efficient.
n, err := src.FileOperations.WriteTo(ctx, src, w, opts.Length, opts.Dup)
if n == 0 && err == syserror.ENOSYS && !opts.Dup {
// Attempt as a ReadFrom. If a WriteTo, a ReadFrom may also be
// more efficient than a copy if buffers are cached or readily
// available. (It's unlikely that they can actually be donated).
n, err = dst.FileOperations.ReadFrom(ctx, dst, r, opts.Length)
}
// Support one last fallback option, but only if at least one of
// the source and destination are regular files. This is because
// if we block at some point, we could lose data. If the source is
// not a pipe then reading is not destructive; if the destination
// is a regular file, then it is guaranteed not to block writing.
if n == 0 && err == syserror.ENOSYS && !opts.Dup && (!dstPipe || !srcPipe) {
// Fallback to an in-kernel copy.
n, err = io.Copy(w, &io.LimitedReader{
R: r,
N: opts.Length,
})
}
// Update offsets, if required.
if n > 0 {
if !dstPipe && !opts.DstOffset {
atomic.StoreInt64(&dst.offset, dst.offset+n)
}
if !srcPipe && !opts.SrcOffset {
atomic.StoreInt64(&src.offset, src.offset+n)
}
// Don't report any errors if we have some progress without data loss.
if w.Err == nil {
err = nil
}
}
// Drop locks.
if dstLock {
dst.mu.Unlock()
}
if srcLock {
src.mu.Unlock()
}
return n, err
}
|