1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package host
import (
"syscall"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/fd"
"gvisor.dev/gvisor/pkg/safemem"
"gvisor.dev/gvisor/pkg/secio"
"gvisor.dev/gvisor/pkg/sentry/fs"
"gvisor.dev/gvisor/pkg/sentry/fs/fsutil"
"gvisor.dev/gvisor/pkg/sentry/memmap"
"gvisor.dev/gvisor/pkg/sentry/socket/unix/transport"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/syserror"
"gvisor.dev/gvisor/pkg/waiter"
)
// inodeOperations implements fs.InodeOperations for an fs.Inodes backed
// by a host file descriptor.
//
// +stateify savable
type inodeOperations struct {
fsutil.InodeNotVirtual `state:"nosave"`
fsutil.InodeNoExtendedAttributes `state:"nosave"`
// fileState implements fs.CachedFileObject. It exists
// to break a circular load dependency between inodeOperations
// and cachingInodeOps (below).
fileState *inodeFileState `state:"wait"`
// cachedInodeOps implements memmap.Mappable.
cachingInodeOps *fsutil.CachingInodeOperations
// readdirMu protects the file offset on the host FD. This is needed
// for readdir because getdents must use the kernel offset, so
// concurrent readdirs must be exclusive.
//
// All read/write functions pass the offset directly to the kernel and
// thus don't need a lock.
readdirMu sync.Mutex `state:"nosave"`
}
// inodeFileState implements fs.CachedFileObject and otherwise fully
// encapsulates state that needs to be manually loaded on restore for
// this file object.
//
// This unfortunate structure exists because fs.CachingInodeOperations
// defines afterLoad and therefore cannot be lazily loaded (to break a
// circular load dependency between it and inodeOperations). Even with
// lazy loading, this approach defines the dependencies between objects
// and the expected load behavior more concretely.
//
// +stateify savable
type inodeFileState struct {
// descriptor is the backing host FD.
descriptor *descriptor `state:"wait"`
// Event queue for blocking operations.
queue waiter.Queue `state:"zerovalue"`
// sattr is used to restore the inodeOperations.
sattr fs.StableAttr `state:"wait"`
// savedUAttr is only allocated during S/R. It points to the save-time
// unstable attributes and is used to validate restore-time ones.
//
// Note that these unstable attributes are only used to detect cross-S/R
// external file system metadata changes. They may differ from the
// cached unstable attributes in cachingInodeOps, as that might differ
// from the external file system attributes if there had been WriteOut
// failures. S/R is transparent to Sentry and the latter will continue
// using its cached values after restore.
savedUAttr *fs.UnstableAttr
}
// ReadToBlocksAt implements fsutil.CachedFileObject.ReadToBlocksAt.
func (i *inodeFileState) ReadToBlocksAt(ctx context.Context, dsts safemem.BlockSeq, offset uint64) (uint64, error) {
// TODO(jamieliu): Using safemem.FromIOReader here is wasteful for two
// reasons:
//
// - Using preadv instead of iterated preads saves on host system calls.
//
// - Host system calls can handle destination memory that would fault in
// gr3 (i.e. they can accept safemem.Blocks with NeedSafecopy() == true),
// so the buffering performed by FromIOReader is unnecessary.
//
// This also applies to the write path below.
return safemem.FromIOReader{secio.NewOffsetReader(fd.NewReadWriter(i.FD()), int64(offset))}.ReadToBlocks(dsts)
}
// WriteFromBlocksAt implements fsutil.CachedFileObject.WriteFromBlocksAt.
func (i *inodeFileState) WriteFromBlocksAt(ctx context.Context, srcs safemem.BlockSeq, offset uint64) (uint64, error) {
return safemem.FromIOWriter{secio.NewOffsetWriter(fd.NewReadWriter(i.FD()), int64(offset))}.WriteFromBlocks(srcs)
}
// SetMaskedAttributes implements fsutil.CachedFileObject.SetMaskedAttributes.
func (i *inodeFileState) SetMaskedAttributes(ctx context.Context, mask fs.AttrMask, attr fs.UnstableAttr, _ bool) error {
if mask.Empty() {
return nil
}
if mask.UID || mask.GID {
return syserror.EPERM
}
if mask.Perms {
if err := syscall.Fchmod(i.FD(), uint32(attr.Perms.LinuxMode())); err != nil {
return err
}
}
if mask.Size {
if err := syscall.Ftruncate(i.FD(), attr.Size); err != nil {
return err
}
}
if mask.AccessTime || mask.ModificationTime {
ts := fs.TimeSpec{
ATime: attr.AccessTime,
ATimeOmit: !mask.AccessTime,
MTime: attr.ModificationTime,
MTimeOmit: !mask.ModificationTime,
}
if err := setTimestamps(i.FD(), ts); err != nil {
return err
}
}
return nil
}
// Sync implements fsutil.CachedFileObject.Sync.
func (i *inodeFileState) Sync(ctx context.Context) error {
return syscall.Fsync(i.FD())
}
// FD implements fsutil.CachedFileObject.FD.
func (i *inodeFileState) FD() int {
return i.descriptor.value
}
func (i *inodeFileState) unstableAttr(ctx context.Context) (fs.UnstableAttr, error) {
var s syscall.Stat_t
if err := syscall.Fstat(i.FD(), &s); err != nil {
return fs.UnstableAttr{}, err
}
return unstableAttr(&s), nil
}
// Allocate implements fsutil.CachedFileObject.Allocate.
func (i *inodeFileState) Allocate(_ context.Context, offset, length int64) error {
return syscall.Fallocate(i.FD(), 0, offset, length)
}
// inodeOperations implements fs.InodeOperations.
var _ fs.InodeOperations = (*inodeOperations)(nil)
// newInode returns a new fs.Inode backed by the host FD.
func newInode(ctx context.Context, msrc *fs.MountSource, fd int, saveable bool) (*fs.Inode, error) {
// Retrieve metadata.
var s syscall.Stat_t
err := syscall.Fstat(fd, &s)
if err != nil {
return nil, err
}
fileState := &inodeFileState{
sattr: stableAttr(&s),
}
// Initialize the wrapped host file descriptor.
fileState.descriptor, err = newDescriptor(fd, saveable, wouldBlock(&s), &fileState.queue)
if err != nil {
return nil, err
}
// Build the fs.InodeOperations.
uattr := unstableAttr(&s)
iops := &inodeOperations{
fileState: fileState,
cachingInodeOps: fsutil.NewCachingInodeOperations(ctx, fileState, uattr, fsutil.CachingInodeOperationsOptions{
ForcePageCache: msrc.Flags.ForcePageCache,
}),
}
// Return the fs.Inode.
return fs.NewInode(ctx, iops, msrc, fileState.sattr), nil
}
// Mappable implements fs.InodeOperations.Mappable.
func (i *inodeOperations) Mappable(inode *fs.Inode) memmap.Mappable {
if !canMap(inode) {
return nil
}
return i.cachingInodeOps
}
// ReturnsWouldBlock returns true if this host FD can return EWOULDBLOCK for
// operations that would block.
func (i *inodeOperations) ReturnsWouldBlock() bool {
return i.fileState.descriptor.wouldBlock
}
// Release implements fs.InodeOperations.Release.
func (i *inodeOperations) Release(context.Context) {
i.fileState.descriptor.Release()
i.cachingInodeOps.Release()
}
// Lookup implements fs.InodeOperations.Lookup.
func (i *inodeOperations) Lookup(ctx context.Context, dir *fs.Inode, name string) (*fs.Dirent, error) {
return nil, syserror.ENOENT
}
// Create implements fs.InodeOperations.Create.
func (i *inodeOperations) Create(ctx context.Context, dir *fs.Inode, name string, flags fs.FileFlags, perm fs.FilePermissions) (*fs.File, error) {
return nil, syserror.EPERM
}
// CreateDirectory implements fs.InodeOperations.CreateDirectory.
func (i *inodeOperations) CreateDirectory(ctx context.Context, dir *fs.Inode, name string, perm fs.FilePermissions) error {
return syserror.EPERM
}
// CreateLink implements fs.InodeOperations.CreateLink.
func (i *inodeOperations) CreateLink(ctx context.Context, dir *fs.Inode, oldname string, newname string) error {
return syserror.EPERM
}
// CreateHardLink implements fs.InodeOperations.CreateHardLink.
func (*inodeOperations) CreateHardLink(context.Context, *fs.Inode, *fs.Inode, string) error {
return syserror.EPERM
}
// CreateFifo implements fs.InodeOperations.CreateFifo.
func (*inodeOperations) CreateFifo(context.Context, *fs.Inode, string, fs.FilePermissions) error {
return syserror.EPERM
}
// Remove implements fs.InodeOperations.Remove.
func (i *inodeOperations) Remove(ctx context.Context, dir *fs.Inode, name string) error {
return syserror.EPERM
}
// RemoveDirectory implements fs.InodeOperations.RemoveDirectory.
func (i *inodeOperations) RemoveDirectory(ctx context.Context, dir *fs.Inode, name string) error {
return syserror.EPERM
}
// Rename implements fs.InodeOperations.Rename.
func (i *inodeOperations) Rename(ctx context.Context, inode *fs.Inode, oldParent *fs.Inode, oldName string, newParent *fs.Inode, newName string, replacement bool) error {
return syserror.EPERM
}
// Bind implements fs.InodeOperations.Bind.
func (i *inodeOperations) Bind(ctx context.Context, dir *fs.Inode, name string, data transport.BoundEndpoint, perm fs.FilePermissions) (*fs.Dirent, error) {
return nil, syserror.EOPNOTSUPP
}
// BoundEndpoint implements fs.InodeOperations.BoundEndpoint.
func (i *inodeOperations) BoundEndpoint(inode *fs.Inode, path string) transport.BoundEndpoint {
return nil
}
// GetFile implements fs.InodeOperations.GetFile.
func (i *inodeOperations) GetFile(ctx context.Context, d *fs.Dirent, flags fs.FileFlags) (*fs.File, error) {
if fs.IsSocket(d.Inode.StableAttr) {
return nil, syserror.ENXIO
}
return newFile(ctx, d, flags, i), nil
}
// canMap returns true if this fs.Inode can be memory mapped.
func canMap(inode *fs.Inode) bool {
// FIXME(b/38213152): Some obscure character devices can be mapped.
return fs.IsFile(inode.StableAttr)
}
// UnstableAttr implements fs.InodeOperations.UnstableAttr.
func (i *inodeOperations) UnstableAttr(ctx context.Context, inode *fs.Inode) (fs.UnstableAttr, error) {
// When the kernel supports mapping host FDs, we do so to take
// advantage of the host page cache. We forego updating fs.Inodes
// because the host manages consistency of its own inode structures.
//
// For fs.Inodes that can never be mapped we take advantage of
// synchronizing metadata updates through host caches.
//
// So can we use host kernel metadata caches?
if !inode.MountSource.Flags.ForcePageCache || !canMap(inode) {
// Then just obtain the attributes.
return i.fileState.unstableAttr(ctx)
}
// No, we're maintaining consistency of metadata ourselves.
return i.cachingInodeOps.UnstableAttr(ctx, inode)
}
// Check implements fs.InodeOperations.Check.
func (i *inodeOperations) Check(ctx context.Context, inode *fs.Inode, p fs.PermMask) bool {
return fs.ContextCanAccessFile(ctx, inode, p)
}
// SetOwner implements fs.InodeOperations.SetOwner.
func (i *inodeOperations) SetOwner(context.Context, *fs.Inode, fs.FileOwner) error {
return syserror.EPERM
}
// SetPermissions implements fs.InodeOperations.SetPermissions.
func (i *inodeOperations) SetPermissions(ctx context.Context, inode *fs.Inode, f fs.FilePermissions) bool {
// Can we use host kernel metadata caches?
if !inode.MountSource.Flags.ForcePageCache || !canMap(inode) {
// Then just change the timestamps on the FD, the host
// will synchronize the metadata update with any host
// inode and page cache.
return syscall.Fchmod(i.fileState.FD(), uint32(f.LinuxMode())) == nil
}
// Otherwise update our cached metadata.
return i.cachingInodeOps.SetPermissions(ctx, inode, f)
}
// SetTimestamps implements fs.InodeOperations.SetTimestamps.
func (i *inodeOperations) SetTimestamps(ctx context.Context, inode *fs.Inode, ts fs.TimeSpec) error {
// Can we use host kernel metadata caches?
if !inode.MountSource.Flags.ForcePageCache || !canMap(inode) {
// Then just change the timestamps on the FD, the host
// will synchronize the metadata update with any host
// inode and page cache.
return setTimestamps(i.fileState.FD(), ts)
}
// Otherwise update our cached metadata.
return i.cachingInodeOps.SetTimestamps(ctx, inode, ts)
}
// Truncate implements fs.InodeOperations.Truncate.
func (i *inodeOperations) Truncate(ctx context.Context, inode *fs.Inode, size int64) error {
// Is the file not memory-mappable?
if !canMap(inode) {
// Then just change the file size on the FD, the host
// will synchronize the metadata update with any host
// inode and page cache.
return syscall.Ftruncate(i.fileState.FD(), size)
}
// Otherwise we need to go through cachingInodeOps, even if the host page
// cache is in use, to invalidate private copies of truncated pages.
return i.cachingInodeOps.Truncate(ctx, inode, size)
}
// Allocate implements fs.InodeOperations.Allocate.
func (i *inodeOperations) Allocate(ctx context.Context, inode *fs.Inode, offset, length int64) error {
// Is the file not memory-mappable?
if !canMap(inode) {
// Then just send the call to the FD, the host will synchronize the metadata
// update with any host inode and page cache.
return i.fileState.Allocate(ctx, offset, length)
}
// Otherwise we need to go through cachingInodeOps, even if the host page
// cache is in use, to invalidate private copies of truncated pages.
return i.cachingInodeOps.Allocate(ctx, offset, length)
}
// WriteOut implements fs.InodeOperations.WriteOut.
func (i *inodeOperations) WriteOut(ctx context.Context, inode *fs.Inode) error {
if inode.MountSource.Flags.ReadOnly {
return nil
}
// Have we been using host kernel metadata caches?
if !inode.MountSource.Flags.ForcePageCache || !canMap(inode) {
// Then the metadata is already up to date on the host.
return nil
}
// Otherwise we need to write out cached pages and attributes
// that are dirty.
return i.cachingInodeOps.WriteOut(ctx, inode)
}
// Readlink implements fs.InodeOperations.Readlink.
func (i *inodeOperations) Readlink(ctx context.Context, inode *fs.Inode) (string, error) {
return readLink(i.fileState.FD())
}
// Getlink implements fs.InodeOperations.Getlink.
func (i *inodeOperations) Getlink(context.Context, *fs.Inode) (*fs.Dirent, error) {
if !fs.IsSymlink(i.fileState.sattr) {
return nil, syserror.ENOLINK
}
return nil, fs.ErrResolveViaReadlink
}
// StatFS implements fs.InodeOperations.StatFS.
func (i *inodeOperations) StatFS(context.Context) (fs.Info, error) {
return fs.Info{}, syserror.ENOSYS
}
// AddLink implements fs.InodeOperations.AddLink.
func (i *inodeOperations) AddLink() {}
// DropLink implements fs.InodeOperations.DropLink.
func (i *inodeOperations) DropLink() {}
// NotifyStatusChange implements fs.InodeOperations.NotifyStatusChange.
func (i *inodeOperations) NotifyStatusChange(ctx context.Context) {}
|