1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package control
import (
"bytes"
"encoding/json"
"fmt"
"sort"
"strings"
"text/tabwriter"
"time"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/fd"
"gvisor.dev/gvisor/pkg/sentry/fdimport"
"gvisor.dev/gvisor/pkg/sentry/fs"
"gvisor.dev/gvisor/pkg/sentry/fs/host"
"gvisor.dev/gvisor/pkg/sentry/fs/user"
hostvfs2 "gvisor.dev/gvisor/pkg/sentry/fsimpl/host"
"gvisor.dev/gvisor/pkg/sentry/kernel"
"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
ktime "gvisor.dev/gvisor/pkg/sentry/kernel/time"
"gvisor.dev/gvisor/pkg/sentry/limits"
"gvisor.dev/gvisor/pkg/sentry/usage"
"gvisor.dev/gvisor/pkg/sentry/vfs"
"gvisor.dev/gvisor/pkg/urpc"
)
// Proc includes task-related functions.
//
// At the moment, this is limited to exec support.
type Proc struct {
Kernel *kernel.Kernel
}
// ExecArgs is the set of arguments to exec.
type ExecArgs struct {
// Filename is the filename to load.
//
// If this is provided as "", then the file will be guessed via Argv[0].
Filename string `json:"filename"`
// Argv is a list of arguments.
Argv []string `json:"argv"`
// Envv is a list of environment variables.
Envv []string `json:"envv"`
// MountNamespace is the mount namespace to execute the new process in.
// A reference on MountNamespace must be held for the lifetime of the
// ExecArgs. If MountNamespace is nil, it will default to the init
// process's MountNamespace.
MountNamespace *fs.MountNamespace
// MountNamespaceVFS2 is the mount namespace to execute the new process in.
// A reference on MountNamespace must be held for the lifetime of the
// ExecArgs. If MountNamespace is nil, it will default to the init
// process's MountNamespace.
MountNamespaceVFS2 *vfs.MountNamespace
// WorkingDirectory defines the working directory for the new process.
WorkingDirectory string `json:"wd"`
// KUID is the UID to run with in the root user namespace. Defaults to
// root if not set explicitly.
KUID auth.KUID
// KGID is the GID to run with in the root user namespace. Defaults to
// the root group if not set explicitly.
KGID auth.KGID
// ExtraKGIDs is the list of additional groups to which the user belongs.
ExtraKGIDs []auth.KGID
// Capabilities is the list of capabilities to give to the process.
Capabilities *auth.TaskCapabilities
// StdioIsPty indicates that FDs 0, 1, and 2 are connected to a host pty FD.
StdioIsPty bool
// FilePayload determines the files to give to the new process.
urpc.FilePayload
// ContainerID is the container for the process being executed.
ContainerID string
// PIDNamespace is the pid namespace for the process being executed.
PIDNamespace *kernel.PIDNamespace
// Limits is the limit set for the process being executed.
Limits *limits.LimitSet
}
// String prints the arguments as a string.
func (args ExecArgs) String() string {
if len(args.Argv) == 0 {
return args.Filename
}
a := make([]string, len(args.Argv))
copy(a, args.Argv)
if args.Filename != "" {
a[0] = args.Filename
}
return strings.Join(a, " ")
}
// Exec runs a new task.
func (proc *Proc) Exec(args *ExecArgs, waitStatus *uint32) error {
newTG, _, _, _, err := proc.execAsync(args)
if err != nil {
return err
}
// Wait for completion.
newTG.WaitExited()
*waitStatus = uint32(newTG.ExitStatus())
return nil
}
// ExecAsync runs a new task, but doesn't wait for it to finish. It is defined
// as a function rather than a method to avoid exposing execAsync as an RPC.
func ExecAsync(proc *Proc, args *ExecArgs) (*kernel.ThreadGroup, kernel.ThreadID, *host.TTYFileOperations, *hostvfs2.TTYFileDescription, error) {
return proc.execAsync(args)
}
// execAsync runs a new task, but doesn't wait for it to finish. It returns the
// newly created thread group and its PID. If the stdio FDs are TTYs, then a
// TTYFileOperations that wraps the TTY is also returned.
func (proc *Proc) execAsync(args *ExecArgs) (*kernel.ThreadGroup, kernel.ThreadID, *host.TTYFileOperations, *hostvfs2.TTYFileDescription, error) {
// Import file descriptors.
fdTable := proc.Kernel.NewFDTable()
creds := auth.NewUserCredentials(
args.KUID,
args.KGID,
args.ExtraKGIDs,
args.Capabilities,
proc.Kernel.RootUserNamespace())
pidns := args.PIDNamespace
if pidns == nil {
pidns = proc.Kernel.RootPIDNamespace()
}
limitSet := args.Limits
if limitSet == nil {
limitSet = limits.NewLimitSet()
}
initArgs := kernel.CreateProcessArgs{
Filename: args.Filename,
Argv: args.Argv,
Envv: args.Envv,
WorkingDirectory: args.WorkingDirectory,
MountNamespace: args.MountNamespace,
MountNamespaceVFS2: args.MountNamespaceVFS2,
Credentials: creds,
FDTable: fdTable,
Umask: 0022,
Limits: limitSet,
MaxSymlinkTraversals: linux.MaxSymlinkTraversals,
UTSNamespace: proc.Kernel.RootUTSNamespace(),
IPCNamespace: proc.Kernel.RootIPCNamespace(),
AbstractSocketNamespace: proc.Kernel.RootAbstractSocketNamespace(),
ContainerID: args.ContainerID,
PIDNamespace: pidns,
}
if initArgs.MountNamespace != nil {
// initArgs must hold a reference on MountNamespace, which will
// be donated to the new process in CreateProcess.
initArgs.MountNamespace.IncRef()
}
if initArgs.MountNamespaceVFS2 != nil {
// initArgs must hold a reference on MountNamespaceVFS2, which will
// be donated to the new process in CreateProcess.
initArgs.MountNamespaceVFS2.IncRef()
}
ctx := initArgs.NewContext(proc.Kernel)
defer fdTable.DecRef(ctx)
if kernel.VFS2Enabled {
// Get the full path to the filename from the PATH env variable.
if initArgs.MountNamespaceVFS2 == nil {
// Set initArgs so that 'ctx' returns the namespace.
//
// Add a reference to the namespace, which is transferred to the new process.
initArgs.MountNamespaceVFS2 = proc.Kernel.GlobalInit().Leader().MountNamespaceVFS2()
initArgs.MountNamespaceVFS2.IncRef()
}
} else {
if initArgs.MountNamespace == nil {
// Set initArgs so that 'ctx' returns the namespace.
initArgs.MountNamespace = proc.Kernel.GlobalInit().Leader().MountNamespace()
// initArgs must hold a reference on MountNamespace, which will
// be donated to the new process in CreateProcess.
initArgs.MountNamespace.IncRef()
}
}
resolved, err := user.ResolveExecutablePath(ctx, &initArgs)
if err != nil {
return nil, 0, nil, nil, err
}
initArgs.Filename = resolved
fds, err := fd.NewFromFiles(args.Files)
if err != nil {
return nil, 0, nil, nil, fmt.Errorf("duplicating payload files: %w", err)
}
defer func() {
for _, fd := range fds {
_ = fd.Close()
}
}()
ttyFile, ttyFileVFS2, err := fdimport.Import(ctx, fdTable, args.StdioIsPty, fds)
if err != nil {
return nil, 0, nil, nil, err
}
tg, tid, err := proc.Kernel.CreateProcess(initArgs)
if err != nil {
return nil, 0, nil, nil, err
}
// Set the foreground process group on the TTY before starting the process.
switch {
case ttyFile != nil:
ttyFile.InitForegroundProcessGroup(tg.ProcessGroup())
case ttyFileVFS2 != nil:
ttyFileVFS2.InitForegroundProcessGroup(tg.ProcessGroup())
}
// Start the newly created process.
proc.Kernel.StartProcess(tg)
return tg, tid, ttyFile, ttyFileVFS2, nil
}
// PsArgs is the set of arguments to ps.
type PsArgs struct {
// JSON will force calls to Ps to return the result as a JSON payload.
JSON bool
}
// Ps provides a process listing for the running kernel.
func (proc *Proc) Ps(args *PsArgs, out *string) error {
var p []*Process
if e := Processes(proc.Kernel, "", &p); e != nil {
return e
}
if !args.JSON {
*out = ProcessListToTable(p)
} else {
s, e := ProcessListToJSON(p)
if e != nil {
return e
}
*out = s
}
return nil
}
// Process contains information about a single process in a Sandbox.
type Process struct {
UID auth.KUID `json:"uid"`
PID kernel.ThreadID `json:"pid"`
// Parent PID
PPID kernel.ThreadID `json:"ppid"`
Threads []kernel.ThreadID `json:"threads"`
// Processor utilization
C int32 `json:"c"`
// TTY name of the process. Will be of the form "pts/N" if there is a
// TTY, or "?" if there is not.
TTY string `json:"tty"`
// Start time
STime string `json:"stime"`
// CPU time
Time string `json:"time"`
// Executable shortname (e.g. "sh" for /bin/sh)
Cmd string `json:"cmd"`
}
// ProcessListToTable prints a table with the following format:
// UID PID PPID C TTY STIME TIME CMD
// 0 1 0 0 pty/4 14:04 505262ns tail
func ProcessListToTable(pl []*Process) string {
var buf bytes.Buffer
tw := tabwriter.NewWriter(&buf, 10, 1, 3, ' ', 0)
fmt.Fprint(tw, "UID\tPID\tPPID\tC\tTTY\tSTIME\tTIME\tCMD")
for _, d := range pl {
fmt.Fprintf(tw, "\n%d\t%d\t%d\t%d\t%s\t%s\t%s\t%s",
d.UID,
d.PID,
d.PPID,
d.C,
d.TTY,
d.STime,
d.Time,
d.Cmd)
}
tw.Flush()
return buf.String()
}
// ProcessListToJSON will return the JSON representation of ps.
func ProcessListToJSON(pl []*Process) (string, error) {
b, err := json.MarshalIndent(pl, "", " ")
if err != nil {
return "", fmt.Errorf("couldn't marshal process list %v: %v", pl, err)
}
return string(b), nil
}
// PrintPIDsJSON prints a JSON object containing only the PIDs in pl. This
// behavior is the same as runc's.
func PrintPIDsJSON(pl []*Process) (string, error) {
pids := make([]kernel.ThreadID, 0, len(pl))
for _, d := range pl {
pids = append(pids, d.PID)
}
b, err := json.Marshal(pids)
if err != nil {
return "", fmt.Errorf("couldn't marshal PIDs %v: %v", pids, err)
}
return string(b), nil
}
// Processes retrieves information about processes running in the sandbox with
// the given container id. All processes are returned if 'containerID' is empty.
func Processes(k *kernel.Kernel, containerID string, out *[]*Process) error {
ts := k.TaskSet()
now := k.RealtimeClock().Now()
pidns := ts.Root
for _, tg := range pidns.ThreadGroups() {
pid := pidns.IDOfThreadGroup(tg)
// If tg has already been reaped ignore it.
if pid == 0 {
continue
}
if containerID != "" && containerID != tg.Leader().ContainerID() {
continue
}
ppid := kernel.ThreadID(0)
if p := tg.Leader().Parent(); p != nil {
ppid = pidns.IDOfThreadGroup(p.ThreadGroup())
}
threads := tg.MemberIDs(pidns)
*out = append(*out, &Process{
UID: tg.Leader().Credentials().EffectiveKUID,
PID: pid,
PPID: ppid,
Threads: threads,
STime: formatStartTime(now, tg.Leader().StartTime()),
C: percentCPU(tg.CPUStats(), tg.Leader().StartTime(), now),
Time: tg.CPUStats().SysTime.String(),
Cmd: tg.Leader().Name(),
TTY: ttyName(tg.TTY()),
})
}
sort.Slice(*out, func(i, j int) bool { return (*out)[i].PID < (*out)[j].PID })
return nil
}
// formatStartTime formats startTime depending on the current time:
// - If startTime was today, HH:MM is used.
// - If startTime was not today but was this year, MonDD is used (e.g. Jan02)
// - If startTime was not this year, the year is used.
func formatStartTime(now, startTime ktime.Time) string {
nowS, nowNs := now.Unix()
n := time.Unix(nowS, nowNs)
startTimeS, startTimeNs := startTime.Unix()
st := time.Unix(startTimeS, startTimeNs)
format := "15:04"
if st.YearDay() != n.YearDay() {
format = "Jan02"
}
if st.Year() != n.Year() {
format = "2006"
}
return st.Format(format)
}
func percentCPU(stats usage.CPUStats, startTime, now ktime.Time) int32 {
// Note: In procps, there is an option to include child CPU stats. As
// it is disabled by default, we do not include them.
total := stats.UserTime + stats.SysTime
lifetime := now.Sub(startTime)
if lifetime <= 0 {
return 0
}
percentCPU := total * 100 / lifetime
// Cap at 99% since procps does the same.
if percentCPU > 99 {
percentCPU = 99
}
return int32(percentCPU)
}
func ttyName(tty *kernel.TTY) string {
if tty == nil {
return "?"
}
return fmt.Sprintf("pts/%d", tty.Index)
}
// ContainerUsage retrieves per-container CPU usage.
func ContainerUsage(kr *kernel.Kernel) map[string]uint64 {
cusage := make(map[string]uint64)
for _, tg := range kr.TaskSet().Root.ThreadGroups() {
// We want each tg's usage including reaped children.
cid := tg.Leader().ContainerID()
stats := tg.CPUStats()
stats.Accumulate(tg.JoinedChildCPUStats())
cusage[cid] += uint64(stats.UserTime.Nanoseconds()) + uint64(stats.SysTime.Nanoseconds())
}
return cusage
}
|