1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package arch
import (
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/marshal/primitive"
"gvisor.dev/gvisor/pkg/usermem"
)
// Stack is a simple wrapper around a usermem.IO and an address. Stack
// implements marshal.CopyContext, and marshallable values can be pushed or
// popped from the stack through the marshal.Marshallable interface.
//
// Stack is not thread-safe.
type Stack struct {
// Our arch info.
// We use this for automatic Native conversion of usermem.Addrs during
// Push() and Pop().
Arch Context
// The interface used to actually copy user memory.
IO usermem.IO
// Our current stack bottom.
Bottom usermem.Addr
// Scratch buffer used for marshalling to avoid having to repeatedly
// allocate scratch memory.
scratchBuf []byte
}
// scratchBufLen is the default length of Stack.scratchBuf. The
// largest structs the stack regularly serializes are arch.SignalInfo
// and arch.UContext64. We'll set the default size as the larger of
// the two, arch.UContext64.
var scratchBufLen = (*UContext64)(nil).SizeBytes()
// CopyScratchBuffer implements marshal.CopyContext.CopyScratchBuffer.
func (s *Stack) CopyScratchBuffer(size int) []byte {
if len(s.scratchBuf) < size {
s.scratchBuf = make([]byte, size)
}
return s.scratchBuf[:size]
}
// StackBottomMagic is the special address callers must past to all stack
// marshalling operations to cause the src/dst address to be computed based on
// the current end of the stack.
const StackBottomMagic = ^usermem.Addr(0) // usermem.Addr(-1)
// CopyOutBytes implements marshal.CopyContext.CopyOutBytes. CopyOutBytes
// computes an appropriate address based on the current end of the
// stack. Callers use the sentinel address StackBottomMagic to marshal methods
// to indicate this.
func (s *Stack) CopyOutBytes(sentinel usermem.Addr, b []byte) (int, error) {
if sentinel != StackBottomMagic {
panic("Attempted to copy out to stack with absolute address")
}
c := len(b)
n, err := s.IO.CopyOut(context.Background(), s.Bottom-usermem.Addr(c), b, usermem.IOOpts{})
if err == nil && n == c {
s.Bottom -= usermem.Addr(n)
}
return n, err
}
// CopyInBytes implements marshal.CopyContext.CopyInBytes. CopyInBytes computes
// an appropriate address based on the current end of the stack. Callers must
// use the sentinel address StackBottomMagic to marshal methods to indicate
// this.
func (s *Stack) CopyInBytes(sentinel usermem.Addr, b []byte) (int, error) {
if sentinel != StackBottomMagic {
panic("Attempted to copy in from stack with absolute address")
}
n, err := s.IO.CopyIn(context.Background(), s.Bottom, b, usermem.IOOpts{})
if err == nil {
s.Bottom += usermem.Addr(n)
}
return n, err
}
// Align aligns the stack to the given offset.
func (s *Stack) Align(offset int) {
if s.Bottom%usermem.Addr(offset) != 0 {
s.Bottom -= (s.Bottom % usermem.Addr(offset))
}
}
// PushNullTerminatedByteSlice writes bs to the stack, followed by an extra null
// byte at the end. On error, the contents of the stack and the bottom cursor
// are undefined.
func (s *Stack) PushNullTerminatedByteSlice(bs []byte) (int, error) {
// Note: Stack grows up, so write the terminal null byte first.
nNull, err := primitive.CopyUint8Out(s, StackBottomMagic, 0)
if err != nil {
return 0, err
}
n, err := primitive.CopyByteSliceOut(s, StackBottomMagic, bs)
if err != nil {
return 0, err
}
return n + nNull, nil
}
// StackLayout describes the location of the arguments and environment on the
// stack.
type StackLayout struct {
// ArgvStart is the beginning of the argument vector.
ArgvStart usermem.Addr
// ArgvEnd is the end of the argument vector.
ArgvEnd usermem.Addr
// EnvvStart is the beginning of the environment vector.
EnvvStart usermem.Addr
// EnvvEnd is the end of the environment vector.
EnvvEnd usermem.Addr
}
// Load pushes the given args, env and aux vector to the stack using the
// well-known format for a new executable. It returns the start and end
// of the argument and environment vectors.
func (s *Stack) Load(args []string, env []string, aux Auxv) (StackLayout, error) {
l := StackLayout{}
// Make sure we start with a 16-byte alignment.
s.Align(16)
// Push the environment vector so the end of the argument vector is adjacent to
// the beginning of the environment vector.
// While the System V abi for x86_64 does not specify an ordering to the
// Information Block (the block holding the arg, env, and aux vectors),
// support features like setproctitle(3) naturally expect these segments
// to be in this order. See: https://www.uclibc.org/docs/psABI-x86_64.pdf
// page 29.
l.EnvvEnd = s.Bottom
envAddrs := make([]usermem.Addr, len(env))
for i := len(env) - 1; i >= 0; i-- {
if _, err := s.PushNullTerminatedByteSlice([]byte(env[i])); err != nil {
return StackLayout{}, err
}
envAddrs[i] = s.Bottom
}
l.EnvvStart = s.Bottom
// Push our strings.
l.ArgvEnd = s.Bottom
argAddrs := make([]usermem.Addr, len(args))
for i := len(args) - 1; i >= 0; i-- {
if _, err := s.PushNullTerminatedByteSlice([]byte(args[i])); err != nil {
return StackLayout{}, err
}
argAddrs[i] = s.Bottom
}
l.ArgvStart = s.Bottom
// We need to align the arguments appropriately.
//
// We must finish on a 16-byte alignment, but we'll play it
// conservatively and finish at 32-bytes. It would be nice to be able
// to call Align here, but unfortunately we need to align the stack
// with all the variable sized arrays pushed. So we just need to do
// some calculations.
argvSize := s.Arch.Width() * uint(len(args)+1)
envvSize := s.Arch.Width() * uint(len(env)+1)
auxvSize := s.Arch.Width() * 2 * uint(len(aux)+1)
total := usermem.Addr(argvSize) + usermem.Addr(envvSize) + usermem.Addr(auxvSize) + usermem.Addr(s.Arch.Width())
expectedBottom := s.Bottom - total
if expectedBottom%32 != 0 {
s.Bottom -= expectedBottom % 32
}
// Push our auxvec.
// NOTE: We need an extra zero here per spec.
// The Push function will automatically terminate
// strings and arrays with a single null value.
auxv := make([]usermem.Addr, 0, len(aux))
for _, a := range aux {
auxv = append(auxv, usermem.Addr(a.Key), a.Value)
}
auxv = append(auxv, usermem.Addr(0))
_, err := s.pushAddrSliceAndTerminator(auxv)
if err != nil {
return StackLayout{}, err
}
// Push environment.
_, err = s.pushAddrSliceAndTerminator(envAddrs)
if err != nil {
return StackLayout{}, err
}
// Push args.
_, err = s.pushAddrSliceAndTerminator(argAddrs)
if err != nil {
return StackLayout{}, err
}
// Push arg count.
lenP := s.Arch.Native(uintptr(len(args)))
if _, err = lenP.CopyOut(s, StackBottomMagic); err != nil {
return StackLayout{}, err
}
return l, nil
}
|