1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build amd64
// +build amd64
package arch
import (
"math"
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/marshal/primitive"
"gvisor.dev/gvisor/pkg/sentry/arch/fpu"
)
// SignalContext64 is equivalent to struct sigcontext, the type passed as the
// second argument to signal handlers set by signal(2).
//
// +marshal
type SignalContext64 struct {
R8 uint64
R9 uint64
R10 uint64
R11 uint64
R12 uint64
R13 uint64
R14 uint64
R15 uint64
Rdi uint64
Rsi uint64
Rbp uint64
Rbx uint64
Rdx uint64
Rax uint64
Rcx uint64
Rsp uint64
Rip uint64
Eflags uint64
Cs uint16
Gs uint16 // always 0 on amd64.
Fs uint16 // always 0 on amd64.
Ss uint16 // only restored if _UC_STRICT_RESTORE_SS (unsupported).
Err uint64
Trapno uint64
Oldmask linux.SignalSet
Cr2 uint64
// Pointer to a struct _fpstate. See b/33003106#comment8.
Fpstate uint64
Reserved [8]uint64
}
// Flags for UContext64.Flags.
const (
_UC_FP_XSTATE = 1
_UC_SIGCONTEXT_SS = 2
_UC_STRICT_RESTORE_SS = 4
)
// UContext64 is equivalent to ucontext_t on 64-bit x86.
//
// +marshal
type UContext64 struct {
Flags uint64
Link uint64
Stack linux.SignalStack
MContext SignalContext64
Sigset linux.SignalSet
}
// From Linux 'arch/x86/include/uapi/asm/sigcontext.h' the following is the
// size of the magic cookie at the end of the xsave frame.
//
// NOTE(b/33003106#comment11): Currently we don't actually populate the fpstate
// on the signal stack.
const _FP_XSTATE_MAGIC2_SIZE = 4
func (c *context64) fpuFrameSize() (size int, useXsave bool) {
size = len(c.fpState)
if size > 512 {
// Make room for the magic cookie at the end of the xsave frame.
size += _FP_XSTATE_MAGIC2_SIZE
useXsave = true
}
return size, useXsave
}
// SignalSetup implements Context.SignalSetup. (Compare to Linux's
// arch/x86/kernel/signal.c:__setup_rt_frame().)
func (c *context64) SignalSetup(st *Stack, act *linux.SigAction, info *linux.SignalInfo, alt *linux.SignalStack, sigset linux.SignalSet) error {
sp := st.Bottom
// "The 128-byte area beyond the location pointed to by %rsp is considered
// to be reserved and shall not be modified by signal or interrupt
// handlers. ... leaf functions may use this area for their entire stack
// frame, rather than adjusting the stack pointer in the prologue and
// epilogue." - AMD64 ABI
//
// (But this doesn't apply if we're starting at the top of the signal
// stack, in which case there is no following stack frame.)
if !(alt.IsEnabled() && sp == alt.Top()) {
sp -= 128
}
// Allocate space for floating point state on the stack.
//
// This isn't strictly necessary because we don't actually populate
// the fpstate. However we do store the floating point state of the
// interrupted thread inside the sentry. Simply accounting for this
// space on the user stack naturally caps the amount of memory the
// sentry will allocate for this purpose.
fpSize, _ := c.fpuFrameSize()
sp = (sp - hostarch.Addr(fpSize)) & ^hostarch.Addr(63)
// Construct the UContext64 now since we need its size.
uc := &UContext64{
// No _UC_FP_XSTATE: see Fpstate above.
// No _UC_STRICT_RESTORE_SS: we don't allow SS changes.
Flags: _UC_SIGCONTEXT_SS,
Stack: *alt,
MContext: SignalContext64{
R8: c.Regs.R8,
R9: c.Regs.R9,
R10: c.Regs.R10,
R11: c.Regs.R11,
R12: c.Regs.R12,
R13: c.Regs.R13,
R14: c.Regs.R14,
R15: c.Regs.R15,
Rdi: c.Regs.Rdi,
Rsi: c.Regs.Rsi,
Rbp: c.Regs.Rbp,
Rbx: c.Regs.Rbx,
Rdx: c.Regs.Rdx,
Rax: c.Regs.Rax,
Rcx: c.Regs.Rcx,
Rsp: c.Regs.Rsp,
Rip: c.Regs.Rip,
Eflags: c.Regs.Eflags,
Cs: uint16(c.Regs.Cs),
Ss: uint16(c.Regs.Ss),
Oldmask: sigset,
},
Sigset: sigset,
}
// TODO(gvisor.dev/issue/159): Set SignalContext64.Err, Trapno, and Cr2
// based on the fault that caused the signal. For now, leave Err and
// Trapno unset and assume CR2 == info.Addr() for SIGSEGVs and
// SIGBUSes.
if linux.Signal(info.Signo) == linux.SIGSEGV || linux.Signal(info.Signo) == linux.SIGBUS {
uc.MContext.Cr2 = info.Addr()
}
// "... the value (%rsp+8) is always a multiple of 16 (...) when
// control is transferred to the function entry point." - AMD64 ABI
ucSize := uc.SizeBytes()
// st.Arch.Width() is for the restorer address. sizeof(siginfo) == 128.
frameSize := int(st.Arch.Width()) + ucSize + 128
frameBottom := (sp-hostarch.Addr(frameSize)) & ^hostarch.Addr(15) - 8
sp = frameBottom + hostarch.Addr(frameSize)
st.Bottom = sp
// Prior to proceeding, figure out if the frame will exhaust the range
// for the signal stack. This is not allowed, and should immediately
// force signal delivery (reverting to the default handler).
if act.Flags&linux.SA_ONSTACK != 0 && alt.IsEnabled() && !alt.Contains(frameBottom) {
return unix.EFAULT
}
// Adjust the code.
info.FixSignalCodeForUser()
// Set up the stack frame.
if _, err := info.CopyOut(st, StackBottomMagic); err != nil {
return err
}
infoAddr := st.Bottom
if _, err := uc.CopyOut(st, StackBottomMagic); err != nil {
return err
}
ucAddr := st.Bottom
if act.Flags&linux.SA_RESTORER != 0 {
// Push the restorer return address.
// Note that this doesn't need to be popped.
if _, err := primitive.CopyUint64Out(st, StackBottomMagic, act.Restorer); err != nil {
return err
}
} else {
// amd64 requires a restorer.
return unix.EFAULT
}
// Set up registers.
c.Regs.Rip = act.Handler
c.Regs.Rsp = uint64(st.Bottom)
c.Regs.Rdi = uint64(info.Signo)
c.Regs.Rsi = uint64(infoAddr)
c.Regs.Rdx = uint64(ucAddr)
c.Regs.Rax = 0
c.Regs.Ds = userDS
c.Regs.Es = userDS
c.Regs.Cs = userCS
c.Regs.Ss = userDS
// Save the thread's floating point state.
c.sigFPState = append(c.sigFPState, c.fpState)
// Signal handler gets a clean floating point state.
c.fpState = fpu.NewState()
return nil
}
// SignalRestore implements Context.SignalRestore. (Compare to Linux's
// arch/x86/kernel/signal.c:sys_rt_sigreturn().)
func (c *context64) SignalRestore(st *Stack, rt bool) (linux.SignalSet, linux.SignalStack, error) {
// Copy out the stack frame.
var uc UContext64
if _, err := uc.CopyIn(st, StackBottomMagic); err != nil {
return 0, linux.SignalStack{}, err
}
var info linux.SignalInfo
if _, err := info.CopyIn(st, StackBottomMagic); err != nil {
return 0, linux.SignalStack{}, err
}
// Restore registers.
c.Regs.R8 = uc.MContext.R8
c.Regs.R9 = uc.MContext.R9
c.Regs.R10 = uc.MContext.R10
c.Regs.R11 = uc.MContext.R11
c.Regs.R12 = uc.MContext.R12
c.Regs.R13 = uc.MContext.R13
c.Regs.R14 = uc.MContext.R14
c.Regs.R15 = uc.MContext.R15
c.Regs.Rdi = uc.MContext.Rdi
c.Regs.Rsi = uc.MContext.Rsi
c.Regs.Rbp = uc.MContext.Rbp
c.Regs.Rbx = uc.MContext.Rbx
c.Regs.Rdx = uc.MContext.Rdx
c.Regs.Rax = uc.MContext.Rax
c.Regs.Rcx = uc.MContext.Rcx
c.Regs.Rsp = uc.MContext.Rsp
c.Regs.Rip = uc.MContext.Rip
c.Regs.Eflags = (c.Regs.Eflags & ^eflagsRestorable) | (uc.MContext.Eflags & eflagsRestorable)
c.Regs.Cs = uint64(uc.MContext.Cs) | 3
// N.B. _UC_STRICT_RESTORE_SS not supported.
c.Regs.Orig_rax = math.MaxUint64
// Restore floating point state.
l := len(c.sigFPState)
if l > 0 {
c.fpState = c.sigFPState[l-1]
// NOTE(cl/133042258): State save requires that any slice
// elements from '[len:cap]' to be zero value.
c.sigFPState[l-1] = nil
c.sigFPState = c.sigFPState[0 : l-1]
} else {
// This might happen if sigreturn(2) calls are unbalanced with
// respect to signal handler entries. This is not expected so
// don't bother to do anything fancy with the floating point
// state.
log.Infof("sigreturn unable to restore application fpstate")
}
return uc.Sigset, uc.Stack, nil
}
|