1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build amd64 i386
package arch
import (
"fmt"
"io"
"syscall"
"gvisor.dev/gvisor/pkg/binary"
"gvisor.dev/gvisor/pkg/cpuid"
"gvisor.dev/gvisor/pkg/log"
rpb "gvisor.dev/gvisor/pkg/sentry/arch/registers_go_proto"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/syserror"
"gvisor.dev/gvisor/pkg/usermem"
)
// System-related constants for x86.
const (
// SyscallWidth is the width of syscall, sysenter, and int 80 insturctions.
SyscallWidth = 2
)
// EFLAGS register bits.
const (
// eflagsCF is the mask for the carry flag.
eflagsCF = uint64(1) << 0
// eflagsPF is the mask for the parity flag.
eflagsPF = uint64(1) << 2
// eflagsAF is the mask for the auxiliary carry flag.
eflagsAF = uint64(1) << 4
// eflagsZF is the mask for the zero flag.
eflagsZF = uint64(1) << 6
// eflagsSF is the mask for the sign flag.
eflagsSF = uint64(1) << 7
// eflagsTF is the mask for the trap flag.
eflagsTF = uint64(1) << 8
// eflagsIF is the mask for the interrupt flag.
eflagsIF = uint64(1) << 9
// eflagsDF is the mask for the direction flag.
eflagsDF = uint64(1) << 10
// eflagsOF is the mask for the overflow flag.
eflagsOF = uint64(1) << 11
// eflagsIOPL is the mask for the I/O privilege level.
eflagsIOPL = uint64(3) << 12
// eflagsNT is the mask for the nested task bit.
eflagsNT = uint64(1) << 14
// eflagsRF is the mask for the resume flag.
eflagsRF = uint64(1) << 16
// eflagsVM is the mask for the virtual mode bit.
eflagsVM = uint64(1) << 17
// eflagsAC is the mask for the alignment check / access control bit.
eflagsAC = uint64(1) << 18
// eflagsVIF is the mask for the virtual interrupt flag.
eflagsVIF = uint64(1) << 19
// eflagsVIP is the mask for the virtual interrupt pending bit.
eflagsVIP = uint64(1) << 20
// eflagsID is the mask for the CPUID detection bit.
eflagsID = uint64(1) << 21
// eflagsPtraceMutable is the mask for the set of EFLAGS that may be
// changed by ptrace(PTRACE_SETREGS). eflagsPtraceMutable is analogous to
// Linux's FLAG_MASK.
eflagsPtraceMutable = eflagsCF | eflagsPF | eflagsAF | eflagsZF | eflagsSF | eflagsTF | eflagsDF | eflagsOF | eflagsRF | eflagsAC | eflagsNT
// eflagsRestorable is the mask for the set of EFLAGS that may be changed by
// SignalReturn. eflagsRestorable is analogous to Linux's FIX_EFLAGS.
eflagsRestorable = eflagsAC | eflagsOF | eflagsDF | eflagsTF | eflagsSF | eflagsZF | eflagsAF | eflagsPF | eflagsCF | eflagsRF
)
// Segment selectors. See arch/x86/include/asm/segment.h.
const (
userCS = 0x33 // guest ring 3 code selector
user32CS = 0x23 // guest ring 3 32 bit code selector
userDS = 0x2b // guest ring 3 data selector
_FS_TLS_SEL = 0x63 // Linux FS thread-local storage selector
_GS_TLS_SEL = 0x6b // Linux GS thread-local storage selector
)
var (
// TrapInstruction is the x86 trap instruction.
TrapInstruction = [1]byte{0xcc}
// CPUIDInstruction is the x86 CPUID instruction.
CPUIDInstruction = [2]byte{0xf, 0xa2}
// X86TrapFlag is an exported const for use by other packages.
X86TrapFlag uint64 = (1 << 8)
)
// x86FPState is x86 floating point state.
type x86FPState []byte
// initX86FPState (defined in asm files) sets up initial state.
func initX86FPState(data *FloatingPointData, useXsave bool)
func newX86FPStateSlice() []byte {
size, align := cpuid.HostFeatureSet().ExtendedStateSize()
capacity := size
// Always use at least 4096 bytes.
if capacity < 4096 {
capacity = 4096
}
return alignedBytes(capacity, align)[:size]
}
// newX86FPState returns an initialized floating point state.
//
// The returned state is large enough to store all floating point state
// supported by host, even if the app won't use much of it due to a restricted
// FeatureSet. Since they may still be able to see state not advertised by
// CPUID we must ensure it does not contain any sentry state.
func newX86FPState() x86FPState {
f := x86FPState(newX86FPStateSlice())
initX86FPState(f.FloatingPointData(), cpuid.HostFeatureSet().UseXsave())
return f
}
// fork creates and returns an identical copy of the x86 floating point state.
func (f x86FPState) fork() x86FPState {
n := x86FPState(newX86FPStateSlice())
copy(n, f)
return n
}
// FloatingPointData returns the raw data pointer.
func (f x86FPState) FloatingPointData() *FloatingPointData {
return (*FloatingPointData)(&f[0])
}
// NewFloatingPointData returns a new floating point data blob.
//
// This is primarily for use in tests.
func NewFloatingPointData() *FloatingPointData {
return (*FloatingPointData)(&(newX86FPState()[0]))
}
// State contains the common architecture bits for X86 (the build tag of this
// file ensures it's only built on x86).
//
// +stateify savable
type State struct {
// The system registers.
Regs syscall.PtraceRegs `state:".(syscallPtraceRegs)"`
// Our floating point state.
x86FPState `state:"wait"`
// FeatureSet is a pointer to the currently active feature set.
FeatureSet *cpuid.FeatureSet
}
// Proto returns a protobuf representation of the system registers in State.
func (s State) Proto() *rpb.Registers {
regs := &rpb.AMD64Registers{
Rax: s.Regs.Rax,
Rbx: s.Regs.Rbx,
Rcx: s.Regs.Rcx,
Rdx: s.Regs.Rdx,
Rsi: s.Regs.Rsi,
Rdi: s.Regs.Rdi,
Rsp: s.Regs.Rsp,
Rbp: s.Regs.Rbp,
R8: s.Regs.R8,
R9: s.Regs.R9,
R10: s.Regs.R10,
R11: s.Regs.R11,
R12: s.Regs.R12,
R13: s.Regs.R13,
R14: s.Regs.R14,
R15: s.Regs.R15,
Rip: s.Regs.Rip,
Rflags: s.Regs.Eflags,
OrigRax: s.Regs.Orig_rax,
Cs: s.Regs.Cs,
Ds: s.Regs.Ds,
Es: s.Regs.Es,
Fs: s.Regs.Fs,
Gs: s.Regs.Gs,
Ss: s.Regs.Ss,
FsBase: s.Regs.Fs_base,
GsBase: s.Regs.Gs_base,
}
return &rpb.Registers{Arch: &rpb.Registers_Amd64{Amd64: regs}}
}
// Fork creates and returns an identical copy of the state.
func (s *State) Fork() State {
return State{
Regs: s.Regs,
x86FPState: s.x86FPState.fork(),
FeatureSet: s.FeatureSet,
}
}
// StateData implements Context.StateData.
func (s *State) StateData() *State {
return s
}
// CPUIDEmulate emulates a cpuid instruction.
func (s *State) CPUIDEmulate(l log.Logger) {
argax := uint32(s.Regs.Rax)
argcx := uint32(s.Regs.Rcx)
ax, bx, cx, dx := s.FeatureSet.EmulateID(argax, argcx)
s.Regs.Rax = uint64(ax)
s.Regs.Rbx = uint64(bx)
s.Regs.Rcx = uint64(cx)
s.Regs.Rdx = uint64(dx)
l.Debugf("CPUID(%x,%x): %x %x %x %x", argax, argcx, ax, bx, cx, dx)
}
// SingleStep implements Context.SingleStep.
func (s *State) SingleStep() bool {
return s.Regs.Eflags&X86TrapFlag != 0
}
// SetSingleStep enables single stepping.
func (s *State) SetSingleStep() {
// Set the trap flag.
s.Regs.Eflags |= X86TrapFlag
}
// ClearSingleStep enables single stepping.
func (s *State) ClearSingleStep() {
// Clear the trap flag.
s.Regs.Eflags &= ^X86TrapFlag
}
// RegisterMap returns a map of all registers.
func (s *State) RegisterMap() (map[string]uintptr, error) {
return map[string]uintptr{
"R15": uintptr(s.Regs.R15),
"R14": uintptr(s.Regs.R14),
"R13": uintptr(s.Regs.R13),
"R12": uintptr(s.Regs.R12),
"Rbp": uintptr(s.Regs.Rbp),
"Rbx": uintptr(s.Regs.Rbx),
"R11": uintptr(s.Regs.R11),
"R10": uintptr(s.Regs.R10),
"R9": uintptr(s.Regs.R9),
"R8": uintptr(s.Regs.R8),
"Rax": uintptr(s.Regs.Rax),
"Rcx": uintptr(s.Regs.Rcx),
"Rdx": uintptr(s.Regs.Rdx),
"Rsi": uintptr(s.Regs.Rsi),
"Rdi": uintptr(s.Regs.Rdi),
"Orig_rax": uintptr(s.Regs.Orig_rax),
"Rip": uintptr(s.Regs.Rip),
"Cs": uintptr(s.Regs.Cs),
"Eflags": uintptr(s.Regs.Eflags),
"Rsp": uintptr(s.Regs.Rsp),
"Ss": uintptr(s.Regs.Ss),
"Fs_base": uintptr(s.Regs.Fs_base),
"Gs_base": uintptr(s.Regs.Gs_base),
"Ds": uintptr(s.Regs.Ds),
"Es": uintptr(s.Regs.Es),
"Fs": uintptr(s.Regs.Fs),
"Gs": uintptr(s.Regs.Gs),
}, nil
}
// PtraceGetRegs implements Context.PtraceGetRegs.
func (s *State) PtraceGetRegs(dst io.Writer) (int, error) {
return dst.Write(binary.Marshal(nil, usermem.ByteOrder, s.ptraceGetRegs()))
}
func (s *State) ptraceGetRegs() syscall.PtraceRegs {
regs := s.Regs
// These may not be initialized.
if regs.Cs == 0 || regs.Ss == 0 || regs.Eflags == 0 {
regs.Eflags = eflagsIF
regs.Cs = userCS
regs.Ss = userDS
}
// As an optimization, Linux <4.7 implements 32-bit fs_base/gs_base
// addresses using reserved descriptors in the GDT instead of the MSRs,
// with selector values FS_TLS_SEL and GS_TLS_SEL respectively. These
// values are actually visible in struct user_regs_struct::fs/gs;
// arch/x86/kernel/ptrace.c:getreg() doesn't attempt to sanitize struct
// thread_struct::fsindex/gsindex.
//
// We always use fs == gs == 0 when fs_base/gs_base is in use, for
// simplicity.
//
// Luckily, Linux <4.7 silently ignores setting fs/gs to 0 via
// arch/x86/kernel/ptrace.c:set_segment_reg() when fs_base/gs_base is a
// 32-bit value and fsindex/gsindex indicates that this optimization is
// in use, as well as the reverse case of setting fs/gs to
// FS/GS_TLS_SEL when fs_base/gs_base is a 64-bit value. (We do the
// same in PtraceSetRegs.)
//
// TODO(gvisor.dev/issue/168): Remove this fixup since newer Linux
// doesn't have this behavior anymore.
if regs.Fs == 0 && regs.Fs_base <= 0xffffffff {
regs.Fs = _FS_TLS_SEL
}
if regs.Gs == 0 && regs.Gs_base <= 0xffffffff {
regs.Gs = _GS_TLS_SEL
}
return regs
}
var ptraceRegsSize = int(binary.Size(syscall.PtraceRegs{}))
// PtraceSetRegs implements Context.PtraceSetRegs.
func (s *State) PtraceSetRegs(src io.Reader) (int, error) {
var regs syscall.PtraceRegs
buf := make([]byte, ptraceRegsSize)
if _, err := io.ReadFull(src, buf); err != nil {
return 0, err
}
binary.Unmarshal(buf, usermem.ByteOrder, ®s)
// Truncate segment registers to 16 bits.
regs.Cs = uint64(uint16(regs.Cs))
regs.Ds = uint64(uint16(regs.Ds))
regs.Es = uint64(uint16(regs.Es))
regs.Fs = uint64(uint16(regs.Fs))
regs.Gs = uint64(uint16(regs.Gs))
regs.Ss = uint64(uint16(regs.Ss))
// In Linux this validation is via arch/x86/kernel/ptrace.c:putreg().
if !isUserSegmentSelector(regs.Cs) {
return 0, syscall.EIO
}
if regs.Ds != 0 && !isUserSegmentSelector(regs.Ds) {
return 0, syscall.EIO
}
if regs.Es != 0 && !isUserSegmentSelector(regs.Es) {
return 0, syscall.EIO
}
if regs.Fs != 0 && !isUserSegmentSelector(regs.Fs) {
return 0, syscall.EIO
}
if regs.Gs != 0 && !isUserSegmentSelector(regs.Gs) {
return 0, syscall.EIO
}
if !isUserSegmentSelector(regs.Ss) {
return 0, syscall.EIO
}
if !isValidSegmentBase(regs.Fs_base) {
return 0, syscall.EIO
}
if !isValidSegmentBase(regs.Gs_base) {
return 0, syscall.EIO
}
// CS and SS are validated, but changes to them are otherwise silently
// ignored on amd64.
regs.Cs = s.Regs.Cs
regs.Ss = s.Regs.Ss
// fs_base/gs_base changes reset fs/gs via do_arch_prctl() on Linux.
if regs.Fs_base != s.Regs.Fs_base {
regs.Fs = 0
}
if regs.Gs_base != s.Regs.Gs_base {
regs.Gs = 0
}
// Ignore "stale" TLS segment selectors for FS and GS. See comment in
// ptraceGetRegs.
if regs.Fs == _FS_TLS_SEL && regs.Fs_base != 0 {
regs.Fs = 0
}
if regs.Gs == _GS_TLS_SEL && regs.Gs_base != 0 {
regs.Gs = 0
}
regs.Eflags = (s.Regs.Eflags &^ eflagsPtraceMutable) | (regs.Eflags & eflagsPtraceMutable)
s.Regs = regs
return ptraceRegsSize, nil
}
// isUserSegmentSelector returns true if the given segment selector specifies a
// privilege level of 3 (USER_RPL).
func isUserSegmentSelector(reg uint64) bool {
return reg&3 == 3
}
// isValidSegmentBase returns true if the given segment base specifies a
// canonical user address.
func isValidSegmentBase(reg uint64) bool {
return reg < uint64(maxAddr64)
}
// ptraceFPRegsSize is the size in bytes of Linux's user_i387_struct, the type
// manipulated by PTRACE_GETFPREGS and PTRACE_SETFPREGS on x86. Equivalently,
// ptraceFPRegsSize is the size in bytes of the x86 FXSAVE area.
const ptraceFPRegsSize = 512
// PtraceGetFPRegs implements Context.PtraceGetFPRegs.
func (s *State) PtraceGetFPRegs(dst io.Writer) (int, error) {
return dst.Write(s.x86FPState[:ptraceFPRegsSize])
}
// PtraceSetFPRegs implements Context.PtraceSetFPRegs.
func (s *State) PtraceSetFPRegs(src io.Reader) (int, error) {
var f [ptraceFPRegsSize]byte
n, err := io.ReadFull(src, f[:])
if err != nil {
return 0, err
}
// Force reserved bits in MXCSR to 0. This is consistent with Linux.
sanitizeMXCSR(x86FPState(f[:]))
// N.B. this only copies the beginning of the FP state, which
// corresponds to the FXSAVE area.
copy(s.x86FPState, f[:])
return n, nil
}
const (
// mxcsrOffset is the offset in bytes of the MXCSR field from the start of
// the FXSAVE area. (Intel SDM Vol. 1, Table 10-2 "Format of an FXSAVE
// Area")
mxcsrOffset = 24
// mxcsrMaskOffset is the offset in bytes of the MXCSR_MASK field from the
// start of the FXSAVE area.
mxcsrMaskOffset = 28
)
var (
mxcsrMask uint32
initMXCSRMask sync.Once
)
// sanitizeMXCSR coerces reserved bits in the MXCSR field of f to 0. ("FXRSTOR
// generates a general-protection fault (#GP) in response to an attempt to set
// any of the reserved bits of the MXCSR register." - Intel SDM Vol. 1, Section
// 10.5.1.2 "SSE State")
func sanitizeMXCSR(f x86FPState) {
mxcsr := usermem.ByteOrder.Uint32(f[mxcsrOffset:])
initMXCSRMask.Do(func() {
temp := x86FPState(alignedBytes(uint(ptraceFPRegsSize), 16))
initX86FPState(temp.FloatingPointData(), false /* useXsave */)
mxcsrMask = usermem.ByteOrder.Uint32(temp[mxcsrMaskOffset:])
if mxcsrMask == 0 {
// "If the value of the MXCSR_MASK field is 00000000H, then the
// MXCSR_MASK value is the default value of 0000FFBFH." - Intel SDM
// Vol. 1, Section 11.6.6 "Guidelines for Writing to the MXCSR
// Register"
mxcsrMask = 0xffbf
}
})
mxcsr &= mxcsrMask
usermem.ByteOrder.PutUint32(f[mxcsrOffset:], mxcsr)
}
const (
// minXstateBytes is the minimum size in bytes of an x86 XSAVE area, equal
// to the size of the XSAVE legacy area (512 bytes) plus the size of the
// XSAVE header (64 bytes). Equivalently, minXstateBytes is GDB's
// X86_XSTATE_SSE_SIZE.
minXstateBytes = 512 + 64
// userXstateXCR0Offset is the offset in bytes of the USER_XSTATE_XCR0_WORD
// field in Linux's struct user_xstateregs, which is the type manipulated
// by ptrace(PTRACE_GET/SETREGSET, NT_X86_XSTATE). Equivalently,
// userXstateXCR0Offset is GDB's I386_LINUX_XSAVE_XCR0_OFFSET.
userXstateXCR0Offset = 464
// xstateBVOffset is the offset in bytes of the XSTATE_BV field in an x86
// XSAVE area.
xstateBVOffset = 512
// xsaveHeaderZeroedOffset and xsaveHeaderZeroedBytes indicate parts of the
// XSAVE header that we coerce to zero: "Bytes 15:8 of the XSAVE header is
// a state-component bitmap called XCOMP_BV. ... Bytes 63:16 of the XSAVE
// header are reserved." - Intel SDM Vol. 1, Section 13.4.2 "XSAVE Header".
// Linux ignores XCOMP_BV, but it's able to recover from XRSTOR #GP
// exceptions resulting from invalid values; we aren't. Linux also never
// uses the compacted format when doing XSAVE and doesn't even define the
// compaction extensions to XSAVE as a CPU feature, so for simplicity we
// assume no one is using them.
xsaveHeaderZeroedOffset = 512 + 8
xsaveHeaderZeroedBytes = 64 - 8
)
func (s *State) ptraceGetXstateRegs(dst io.Writer, maxlen int) (int, error) {
// N.B. s.x86FPState may contain more state than the application
// expects. We only copy the subset that would be in their XSAVE area.
ess, _ := s.FeatureSet.ExtendedStateSize()
f := make([]byte, ess)
copy(f, s.x86FPState)
// "The XSAVE feature set does not use bytes 511:416; bytes 463:416 are
// reserved." - Intel SDM Vol 1., Section 13.4.1 "Legacy Region of an XSAVE
// Area". Linux uses the first 8 bytes of this area to store the OS XSTATE
// mask. GDB relies on this: see
// gdb/x86-linux-nat.c:x86_linux_read_description().
usermem.ByteOrder.PutUint64(f[userXstateXCR0Offset:], s.FeatureSet.ValidXCR0Mask())
if len(f) > maxlen {
f = f[:maxlen]
}
return dst.Write(f)
}
func (s *State) ptraceSetXstateRegs(src io.Reader, maxlen int) (int, error) {
// Allow users to pass an xstate register set smaller than ours (they can
// mask bits out of XSTATE_BV), as long as it's at least minXstateBytes.
// Also allow users to pass a register set larger than ours; anything after
// their ExtendedStateSize will be ignored. (I think Linux technically
// permits setting a register set smaller than minXstateBytes, but it has
// the same silent truncation behavior in kernel/ptrace.c:ptrace_regset().)
if maxlen < minXstateBytes {
return 0, syscall.EFAULT
}
ess, _ := s.FeatureSet.ExtendedStateSize()
if maxlen > int(ess) {
maxlen = int(ess)
}
f := make([]byte, maxlen)
if _, err := io.ReadFull(src, f); err != nil {
return 0, err
}
// Force reserved bits in MXCSR to 0. This is consistent with Linux.
sanitizeMXCSR(x86FPState(f))
// Users can't enable *more* XCR0 bits than what we, and the CPU, support.
xstateBV := usermem.ByteOrder.Uint64(f[xstateBVOffset:])
xstateBV &= s.FeatureSet.ValidXCR0Mask()
usermem.ByteOrder.PutUint64(f[xstateBVOffset:], xstateBV)
// Force XCOMP_BV and reserved bytes in the XSAVE header to 0.
reserved := f[xsaveHeaderZeroedOffset : xsaveHeaderZeroedOffset+xsaveHeaderZeroedBytes]
for i := range reserved {
reserved[i] = 0
}
return copy(s.x86FPState, f), nil
}
// Register sets defined in include/uapi/linux/elf.h.
const (
_NT_PRSTATUS = 1
_NT_PRFPREG = 2
_NT_X86_XSTATE = 0x202
)
// PtraceGetRegSet implements Context.PtraceGetRegSet.
func (s *State) PtraceGetRegSet(regset uintptr, dst io.Writer, maxlen int) (int, error) {
switch regset {
case _NT_PRSTATUS:
if maxlen < ptraceRegsSize {
return 0, syserror.EFAULT
}
return s.PtraceGetRegs(dst)
case _NT_PRFPREG:
if maxlen < ptraceFPRegsSize {
return 0, syserror.EFAULT
}
return s.PtraceGetFPRegs(dst)
case _NT_X86_XSTATE:
return s.ptraceGetXstateRegs(dst, maxlen)
default:
return 0, syserror.EINVAL
}
}
// PtraceSetRegSet implements Context.PtraceSetRegSet.
func (s *State) PtraceSetRegSet(regset uintptr, src io.Reader, maxlen int) (int, error) {
switch regset {
case _NT_PRSTATUS:
if maxlen < ptraceRegsSize {
return 0, syserror.EFAULT
}
return s.PtraceSetRegs(src)
case _NT_PRFPREG:
if maxlen < ptraceFPRegsSize {
return 0, syserror.EFAULT
}
return s.PtraceSetFPRegs(src)
case _NT_X86_XSTATE:
return s.ptraceSetXstateRegs(src, maxlen)
default:
return 0, syserror.EINVAL
}
}
// FullRestore indicates whether a full restore is required.
func (s *State) FullRestore() bool {
// A fast system call return is possible only if
//
// * RCX matches the instruction pointer.
// * R11 matches our flags value.
// * Usermode does not expect to set either the resume flag or the
// virtual mode flags (unlikely.)
// * CS and SS are set to the standard selectors.
//
// That is, SYSRET results in the correct final state.
fastRestore := s.Regs.Rcx == s.Regs.Rip &&
s.Regs.Eflags == s.Regs.R11 &&
(s.Regs.Eflags&eflagsRF == 0) &&
(s.Regs.Eflags&eflagsVM == 0) &&
s.Regs.Cs == userCS &&
s.Regs.Ss == userDS
return !fastRestore
}
// New returns a new architecture context.
func New(arch Arch, fs *cpuid.FeatureSet) Context {
switch arch {
case AMD64:
return &context64{
State{
x86FPState: newX86FPState(),
FeatureSet: fs,
},
[]x86FPState(nil),
}
}
panic(fmt.Sprintf("unknown architecture %v", arch))
}
|