1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package arch
import (
"fmt"
"syscall"
"gvisor.googlesource.com/gvisor/pkg/cpuid"
"gvisor.googlesource.com/gvisor/pkg/sentry/usermem"
)
// ErrFloatingPoint indicates a failed restore due to unusable floating point
// state.
type ErrFloatingPoint struct {
// supported is the supported floating point state.
supported uint64
// saved is the saved floating point state.
saved uint64
}
// Error returns a sensible description of the restore error.
func (e ErrFloatingPoint) Error() string {
return fmt.Sprintf("floating point state contains unsupported features; supported: %#x saved: %#x", e.supported, e.saved)
}
// XSTATE_BV does not exist if FXSAVE is used, but FXSAVE implicitly saves x87
// and SSE state, so this is the equivalent XSTATE_BV value.
const fxsaveBV uint64 = cpuid.XSAVEFeatureX87 | cpuid.XSAVEFeatureSSE
// afterLoad is invoked by stateify.
func (s *State) afterLoad() {
old := s.x86FPState
// Recreate the slice. This is done to ensure that it is aligned
// appropriately in memory, and large enough to accommodate any new
// state that may be saved by the new CPU. Even if extraneous new state
// is saved, the state we care about is guaranteed to be a subset of
// new state. Later optimizations can use less space when using a
// smaller state component bitmap. Intel SDM Volume 1 Chapter 13 has
// more info.
s.x86FPState = newX86FPState()
// x86FPState always contains all the FP state supported by the host.
// We may have come from a newer machine that supports additional state
// which we cannot restore.
//
// The x86 FP state areas are backwards compatible, so we can simply
// truncate the additional floating point state.
//
// Applications should not depend on the truncated state because it
// should relate only to features that were not exposed in the app
// FeatureSet. However, because we do not *prevent* them from using
// this state, we must verify here that there is no in-use state
// (according to XSTATE_BV) which we do not support.
if len(s.x86FPState) < len(old) {
// What do we support?
supportedBV := fxsaveBV
if fs := cpuid.HostFeatureSet(); fs.UseXsave() {
supportedBV = fs.ValidXCR0Mask()
}
// What was in use?
savedBV := fxsaveBV
if len(old) >= xstateBVOffset+8 {
savedBV = usermem.ByteOrder.Uint64(old[xstateBVOffset:])
}
// Supported features must be a superset of saved features.
if savedBV&^supportedBV != 0 {
panic(ErrFloatingPoint{supported: supportedBV, saved: savedBV})
}
}
// Copy to the new, aligned location.
copy(s.x86FPState, old)
}
// +stateify savable
type syscallPtraceRegs struct {
R15 uint64
R14 uint64
R13 uint64
R12 uint64
Rbp uint64
Rbx uint64
R11 uint64
R10 uint64
R9 uint64
R8 uint64
Rax uint64
Rcx uint64
Rdx uint64
Rsi uint64
Rdi uint64
Orig_rax uint64
Rip uint64
Cs uint64
Eflags uint64
Rsp uint64
Ss uint64
Fs_base uint64
Gs_base uint64
Ds uint64
Es uint64
Fs uint64
Gs uint64
}
// saveRegs is invoked by stateify.
func (s *State) saveRegs() syscallPtraceRegs {
return syscallPtraceRegs(s.Regs)
}
// loadRegs is invoked by stateify.
func (s *State) loadRegs(r syscallPtraceRegs) {
s.Regs = syscall.PtraceRegs(r)
}
|