1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package arch provides abstractions around architecture-dependent details,
// such as syscall calling conventions, native types, etc.
package arch
import (
"fmt"
"io"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/cpuid"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/marshal"
"gvisor.dev/gvisor/pkg/sentry/limits"
"gvisor.dev/gvisor/pkg/usermem"
)
// Arch describes an architecture.
type Arch int
const (
// AMD64 is the x86-64 architecture.
AMD64 Arch = iota
// ARM64 is the aarch64 architecture.
ARM64
)
// String implements fmt.Stringer.
func (a Arch) String() string {
switch a {
case AMD64:
return "amd64"
case ARM64:
return "arm64"
default:
return fmt.Sprintf("Arch(%d)", a)
}
}
// FloatingPointData is a generic type, and will always be passed as a pointer.
// We rely on the individual arch implementations to meet all the necessary
// requirements. For example, on x86 the region must be 16-byte aligned and 512
// bytes in size.
type FloatingPointData byte
// Context provides architecture-dependent information for a specific thread.
//
// NOTE(b/34169503): Currently we use uintptr here to refer to a generic native
// register value. While this will work for the foreseeable future, it isn't
// strictly correct. We may want to create some abstraction that makes this
// more clear or enables us to store values of arbitrary widths. This is
// particularly true for RegisterMap().
type Context interface {
// Arch returns the architecture for this Context.
Arch() Arch
// Native converts a generic type to a native value.
//
// Because the architecture is not specified here, we may be dealing
// with return values of varying sizes (for example ARCH_GETFS). This
// is a simple utility function to convert to the native size in these
// cases, and then we can CopyOut.
Native(val uintptr) marshal.Marshallable
// Value converts a native type back to a generic value.
// Once a value has been converted to native via the above call -- it
// can be converted back here.
Value(val marshal.Marshallable) uintptr
// Width returns the number of bytes for a native value.
Width() uint
// Fork creates a clone of the context.
Fork() Context
// SyscallNo returns the syscall number.
SyscallNo() uintptr
// SyscallSaveOrig save orignal register value.
SyscallSaveOrig()
// SyscallArgs returns the syscall arguments in an array.
SyscallArgs() SyscallArguments
// Return returns the return value for a system call.
Return() uintptr
// SetReturn sets the return value for a system call.
SetReturn(value uintptr)
// RestartSyscall reverses over the current syscall instruction, such that
// when the application resumes execution the syscall will be re-attempted.
RestartSyscall()
// RestartSyscallWithRestartBlock reverses over the current syscall
// instraction and overwrites the current syscall number with that of
// restart_syscall(2). This causes the application to restart the current
// syscall with a custom function when execution resumes.
RestartSyscallWithRestartBlock()
// IP returns the current instruction pointer.
IP() uintptr
// SetIP sets the current instruction pointer.
SetIP(value uintptr)
// Stack returns the current stack pointer.
Stack() uintptr
// SetStack sets the current stack pointer.
SetStack(value uintptr)
// TLS returns the current TLS pointer.
TLS() uintptr
// SetTLS sets the current TLS pointer. Returns false if value is invalid.
SetTLS(value uintptr) bool
// SetOldRSeqInterruptedIP sets the register that contains the old IP
// when an "old rseq" restartable sequence is interrupted.
SetOldRSeqInterruptedIP(value uintptr)
// StateData returns a pointer to underlying architecture state.
StateData() *State
// RegisterMap returns a map of all registers.
RegisterMap() (map[string]uintptr, error)
// NewSignalAct returns a new object that is equivalent to struct sigaction
// in the guest architecture.
NewSignalAct() NativeSignalAct
// NewSignalStack returns a new object that is equivalent to stack_t in the
// guest architecture.
NewSignalStack() NativeSignalStack
// SignalSetup modifies the context in preparation for handling the
// given signal.
//
// st is the stack where the signal handler frame should be
// constructed.
//
// act is the SignalAct that specifies how this signal is being
// handled.
//
// info is the SignalInfo of the signal being delivered.
//
// alt is the alternate signal stack (even if the alternate signal
// stack is not going to be used).
//
// sigset is the signal mask before entering the signal handler.
SignalSetup(st *Stack, act *SignalAct, info *SignalInfo, alt *SignalStack, sigset linux.SignalSet) error
// SignalRestore restores context after returning from a signal
// handler.
//
// st is the current thread stack.
//
// rt is true if SignalRestore is being entered from rt_sigreturn and
// false if SignalRestore is being entered from sigreturn.
// SignalRestore returns the thread's new signal mask.
SignalRestore(st *Stack, rt bool) (linux.SignalSet, SignalStack, error)
// CPUIDEmulate emulates a CPUID instruction according to current register state.
CPUIDEmulate(l log.Logger)
// SingleStep returns true if single stepping is enabled.
SingleStep() bool
// SetSingleStep enables single stepping.
SetSingleStep()
// ClearSingleStep disables single stepping.
ClearSingleStep()
// FloatingPointData will be passed to underlying save routines.
FloatingPointData() *FloatingPointData
// NewMmapLayout returns a layout for a new MM, where MinAddr for the
// returned layout must be no lower than min, and MaxAddr for the returned
// layout must be no higher than max. Repeated calls to NewMmapLayout may
// return different layouts.
NewMmapLayout(min, max usermem.Addr, limits *limits.LimitSet) (MmapLayout, error)
// PIELoadAddress returns a preferred load address for a
// position-independent executable within l.
PIELoadAddress(l MmapLayout) usermem.Addr
// FeatureSet returns the FeatureSet in use in this context.
FeatureSet() *cpuid.FeatureSet
// Hack around our package dependences being too broken to support the
// equivalent of arch_ptrace():
// PtracePeekUser implements ptrace(PTRACE_PEEKUSR).
PtracePeekUser(addr uintptr) (marshal.Marshallable, error)
// PtracePokeUser implements ptrace(PTRACE_POKEUSR).
PtracePokeUser(addr, data uintptr) error
// PtraceGetRegs implements ptrace(PTRACE_GETREGS) by writing the
// general-purpose registers represented by this Context to dst and
// returning the number of bytes written.
PtraceGetRegs(dst io.Writer) (int, error)
// PtraceSetRegs implements ptrace(PTRACE_SETREGS) by reading
// general-purpose registers from src into this Context and returning the
// number of bytes read.
PtraceSetRegs(src io.Reader) (int, error)
// PtraceGetFPRegs implements ptrace(PTRACE_GETFPREGS) by writing the
// floating-point registers represented by this Context to addr in dst and
// returning the number of bytes written.
PtraceGetFPRegs(dst io.Writer) (int, error)
// PtraceSetFPRegs implements ptrace(PTRACE_SETFPREGS) by reading
// floating-point registers from src into this Context and returning the
// number of bytes read.
PtraceSetFPRegs(src io.Reader) (int, error)
// PtraceGetRegSet implements ptrace(PTRACE_GETREGSET) by writing the
// register set given by architecture-defined value regset from this
// Context to dst and returning the number of bytes written, which must be
// less than or equal to maxlen.
PtraceGetRegSet(regset uintptr, dst io.Writer, maxlen int) (int, error)
// PtraceSetRegSet implements ptrace(PTRACE_SETREGSET) by reading the
// register set given by architecture-defined value regset from src and
// returning the number of bytes read, which must be less than or equal to
// maxlen.
PtraceSetRegSet(regset uintptr, src io.Reader, maxlen int) (int, error)
// FullRestore returns 'true' if all CPU registers must be restored
// when switching to the untrusted application. Typically a task enters
// and leaves the kernel via a system call. Platform.Switch() may
// optimize for this by not saving/restoring all registers if allowed
// by the ABI. For e.g. the amd64 ABI specifies that syscall clobbers
// %rcx and %r11. If FullRestore returns true then these optimizations
// must be disabled and all registers restored.
FullRestore() bool
}
// MmapDirection is a search direction for mmaps.
type MmapDirection int
const (
// MmapBottomUp instructs mmap to prefer lower addresses.
MmapBottomUp MmapDirection = iota
// MmapTopDown instructs mmap to prefer higher addresses.
MmapTopDown
)
// MmapLayout defines the layout of the user address space for a particular
// MemoryManager.
//
// Note that "highest address" below is always exclusive.
//
// +stateify savable
type MmapLayout struct {
// MinAddr is the lowest mappable address.
MinAddr usermem.Addr
// MaxAddr is the highest mappable address.
MaxAddr usermem.Addr
// BottomUpBase is the lowest address that may be returned for a
// MmapBottomUp mmap.
BottomUpBase usermem.Addr
// TopDownBase is the highest address that may be returned for a
// MmapTopDown mmap.
TopDownBase usermem.Addr
// DefaultDirection is the direction for most non-fixed mmaps in this
// layout.
DefaultDirection MmapDirection
// MaxStackRand is the maximum randomization to apply to stack
// allocations to maintain a proper gap between the stack and
// TopDownBase.
MaxStackRand uint64
}
// Valid returns true if this layout is valid.
func (m *MmapLayout) Valid() bool {
if m.MinAddr > m.MaxAddr {
return false
}
if m.BottomUpBase < m.MinAddr {
return false
}
if m.BottomUpBase > m.MaxAddr {
return false
}
if m.TopDownBase < m.MinAddr {
return false
}
if m.TopDownBase > m.MaxAddr {
return false
}
return true
}
// SyscallArgument is an argument supplied to a syscall implementation. The
// methods used to access the arguments are named after the ***C type name*** and
// they convert to the closest Go type available. For example, Int() refers to a
// 32-bit signed integer argument represented in Go as an int32.
//
// Using the accessor methods guarantees that the conversion between types is
// correct, taking into account size and signedness (i.e., zero-extension vs
// signed-extension).
type SyscallArgument struct {
// Prefer to use accessor methods instead of 'Value' directly.
Value uintptr
}
// SyscallArguments represents the set of arguments passed to a syscall.
type SyscallArguments [6]SyscallArgument
// Pointer returns the usermem.Addr representation of a pointer argument.
func (a SyscallArgument) Pointer() usermem.Addr {
return usermem.Addr(a.Value)
}
// Int returns the int32 representation of a 32-bit signed integer argument.
func (a SyscallArgument) Int() int32 {
return int32(a.Value)
}
// Uint returns the uint32 representation of a 32-bit unsigned integer argument.
func (a SyscallArgument) Uint() uint32 {
return uint32(a.Value)
}
// Int64 returns the int64 representation of a 64-bit signed integer argument.
func (a SyscallArgument) Int64() int64 {
return int64(a.Value)
}
// Uint64 returns the uint64 representation of a 64-bit unsigned integer argument.
func (a SyscallArgument) Uint64() uint64 {
return uint64(a.Value)
}
// SizeT returns the uint representation of a size_t argument.
func (a SyscallArgument) SizeT() uint {
return uint(a.Value)
}
// ModeT returns the int representation of a mode_t argument.
func (a SyscallArgument) ModeT() uint {
return uint(uint16(a.Value))
}
|